設(shè)函數(shù)
,
(1)若不等式
的解集
.求
的值;
(2)若
求
的最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)若x=
時(shí),
取得極值,求
的值;
(2)若
在其定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)設(shè)
,當(dāng)
=-1時(shí),證明
在其定義域內(nèi)恒成立,并證明
(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知函數(shù)
為有理數(shù)且
),求函數(shù)
的最小值;
(2)①試用(1)的結(jié)果證明命題
:設(shè)
為有理數(shù)且
,若
時(shí),則
;
②請(qǐng)將命題
推廣到一般形式
,并證明你的結(jié)論;
注:當(dāng)
為正有理數(shù)時(shí),有求導(dǎo)公式![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,![]()
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),函數(shù)
恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)正實(shí)數(shù)
滿足
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,證明:
(Ⅰ)對(duì)每個(gè)
,存在唯一的
,滿足
;
(Ⅱ)對(duì)任意
,由(Ⅰ)中
構(gòu)成的數(shù)列
滿足
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/0/1klih2.png" style="vertical-align:middle;" />,若
在
上為增函數(shù),則稱
為“一階比增函數(shù)”.
(Ⅰ) 若
是“一階比增函數(shù)”,求實(shí)數(shù)
的取值范圍;
(Ⅱ) 若
是“一階比增函數(shù)”,求證:
,
;
(Ⅲ)若
是“一階比增函數(shù)”,且
有零點(diǎn),求證:
有解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
,函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù)。
(1)判斷
在R上的單調(diào)性;
(2)當(dāng)
時(shí),求
在
上的最值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對(duì)任意的x∈[0,+∞),有f(x)≤kx2成立,求實(shí)數(shù)k的最小值.]
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com