【題目】已知圓
過兩點
,
,且圓心
在直線
上.
(Ⅰ)求圓
的標準方程;
(Ⅱ)直線
過點
且與圓
有兩個不同的交點
,
,若直線
的斜率
大于0,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線
使得弦
的垂直平分線過點
,若存在,求出直線
的方程;若不存在,請說明理由.
【答案】(Ⅰ)(x﹣1)2+y2=25;(Ⅱ)
;(Ⅲ)x+2y﹣1=0.
【解析】試題分析:(Ⅰ)圓心C是MN的垂直平分線與直線2x-y-2=0的交點,CM長為半徑,進而可得圓的方程;
(Ⅱ)直線l過點(-2,5)且與圓C有兩個不同的交點,則C到l的距離小于半徑,進而得到k的取值范圍;
(Ⅲ)求出AB的垂直平分線方程,將圓心坐標代入求出斜率,進而可得答案.
試題解析:
(I)MN的垂直平分線方程為:x﹣2y﹣1=0與2x﹣y﹣2=0聯(lián)立解得圓心坐標為C(1,0)
R2=|CM|2=(﹣3﹣1)2+(3﹣0)2=25
∴圓C的標準方程為:(x﹣1)2+y2=25
(II)設直線
的方程為:y﹣5=k(x+2)即kx﹣y+2k+5=0,設C到直線l的距離為d,
則d=![]()
由題意:d<5 即:8k2﹣15k>0
∴k<0或k>![]()
又因為k>0
∴k的取值范圍是(
,+∞)
(III)設符合條件的直線
存在,則AB的垂直平分線方程為:y+1=﹣
(x﹣3)即:x+ky+k﹣3=0
∵弦的垂直平分線過圓心(1,0)∴k﹣2=0 即k=2
∵k=2>![]()
故符合條件的直線存在,l的方程:x+2y﹣1=0.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,
在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,
表示神風摩托車廠一天的銷售收入與摩托車銷售量的關系;
表示摩托車廠一天的銷售成本與銷售量的關系.
![]()
(1)寫出銷售收入與銷售量之間的函數(shù)關系式;
(2)寫出銷售成本與銷售量之間的函數(shù)關系式;
(3)當一天的銷售量為多少輛時,銷售收入等于銷售成本;
(4)當一天的銷售超過多少輛時,工廠才能獲利?(利潤=收入-成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
(
)的上頂點到右頂點的距離為
,左焦點為
,過點
且斜率為
的直線
交橢圓于
,
兩點.
(Ⅰ)求橢圓
的標準方程及
的取值范圍;
(Ⅱ)在
軸上是否存在定點
,使
恒為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱
中,底面
為正三角形,
底面
,且
,
是
的中點.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)在側(cè)棱
上是否存在一點
,使得三棱錐
的體積是
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:
,點
在x軸的正半軸上,過點M的直線
與拋物線C相交于A,B兩點,O為坐標原點.
![]()
(1)若
,且直線
的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點M,使得不論直線
繞點M如何轉(zhuǎn)動,
恒為定值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x),f(0)=-2,且對
,y
R,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達式;
(2)已知關于x的不等式f(x)-ax+a+1
的解集為A,若A[2,3],求實數(shù)a的取值范圍;
(3)已知數(shù)列{
}中,
,
,記
,且數(shù)列{
的前n項和為
,
求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組
,第2組
,第3組
,第4組
,第5組
,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。
![]()
區(qū)間 |
|
|
|
|
|
人數(shù) |
| a | b |
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com