(本小題滿分13分)在平面直角坐標系
中,已知橢圓
:
(
)的左焦點為
,且點
在
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知直線
的斜率為2且經過橢圓
的左焦點.求直線
與該橢圓
相交的弦長。
(Ⅰ)
.(Ⅱ)
=
=
。
【解析】
試題分析:(1)根據橢圓的性質可知焦點坐標得到c的值,然后結合點在橢圓上得到a,b的關系式,進而求解橢圓方程。(2)根據題意設出直線方程,那么與橢圓聯立方程組,結合韋達定理得到弦長公式。
(Ⅰ)因為橢圓
的左焦點為
,所以
,
點
代入橢圓
,得
,即
,
所以
,所以橢圓
的方程為
.
(Ⅱ)直線
的方程為
,
,消去
并整理得
,
,![]()
=
=
,
考點:本試題主要考查了橢圓標準方程,簡單幾何性質,直線與橢圓的位置關系等基礎知識.考查運算求解能力,推理論證能力;考查函數與方程思想,化歸與轉化思想。
點評:解決該試題的關鍵是能夠熟練的利用a,b,c的關系式,求解橢圓的方程,以及能運用設而不求的思想,設點,接和韋達定理表示出弦長公式。
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數![]()
.
(1)求函數
的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數
在區間
上的圖象.
(3)設0<x<
,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為
的函數
是奇函數.
(1)求
的值;(2)判斷函數
的單調性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數
的表達式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數列
的前
項和![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com