(2014·武漢模擬)已知點P是圓M:x2+(y+m)2=8(m>0,m≠
)上一動點,點N(0,m)是圓M所在平面內一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(1)當P在圓M上運動時,記動點Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標準方程.
(2)過原點斜率為k的直線交曲線Г于A,B兩點,其中A在第一象限,且它在x軸上的射影為點C,直線BC交曲線Г于另一點D,記直線AD的斜率為k′,是否存在m,使得對任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
已知圓
的方程為
,定直線
的方程為
.動圓
與圓
外切,且與直線
相切.
(1)求動圓圓心
的軌跡
的方程;
(2)直線
與軌跡
相切于第一象限的點
, 過點
作直線
的垂線恰好經過點
,并交軌跡
于異于點
的點
,求直線
的方程及
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
,
的坐標分別為
,
.直線
,
相交于點
,且它們的斜率之積是
,記動點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設
是曲線
上的動點,直線
,
分別交直線
于點
,線段
的中點為
,求直線
與直線
的斜率之積的取值范圍;
(3)在(2)的條件下,記直線
與
的交點為
,試探究點
與曲線
的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2012•廣東)在平面直角坐標系xOy中,已知橢圓C:
的離心率
,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
過點
,且離心率
.
(1)求橢圓C的方程;
(2)已知過點
的直線
與該橢圓相交于A、B兩點,試問:在直線
上是否存在點P,使得
是正三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xoy中,已知橢圓C1:
的左焦點為F1(-1,0),且點P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:
相切,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
是拋物線
上不同的兩點,點
在拋物線
的準線
上,且焦點
到直線
的距離為
.
(I)求拋物線
的方程;
(2)現給出以下三個論斷:①直線
過焦點
;②直線
過原點
;③直線
平行
軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結論,寫出一個正確的命題,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
:
和
:![]()
的焦點分別為
,
交于
兩點(
為坐標原點),且![]()
.
(1)求拋物線
的方程;
(2)過點
的直線交
的下半部分于點
,交
的左半部分于點
,點
坐標為
,求△
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com