在平面直角坐標系
中,已知橢圓
的中心在原點
,焦點在
軸上,短軸長為
,離心率為
.
(I)求橢圓
的方程;
(II)
為橢圓
上滿足
的面積為
的任意兩點,
為線段
的中點,射線
交橢圓
與點
,設(shè)
,求實數(shù)
的值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的離心率
,
是其左右焦點,點
是直線
(其中
)上一點,且直線
的傾斜角為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
是橢圓
上兩點,滿足
,求
(
為坐標原點)面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過點
的直線
與拋物線
交于
兩點,
為坐標原點.
(1)若以
為直徑的圓經(jīng)過原點
,求直線
的方程;
(2)若線段
的中垂線交
軸于點
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
與直線
相交于
兩點.
(1)若橢圓的半焦距
,直線
與
圍成的矩形
的面積為8,
求橢圓的方程;
(2)若
(
為坐標原點),求證:
;
(3)在(2)的條件下,若橢圓的離心率
滿足
,求橢圓長軸長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)F為拋物線E: ![]()
的焦點,A、B、C為該拋物線上三點,已知
且
.
(1)求拋物線方程;
(2)設(shè)動直線l與拋物線E相切于點P,與直線
相交于點Q。證明以PQ為直徑的圓恒過y軸上某定點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面內(nèi)動點
到點
的距離等于它到直線
的距離,記點
的軌跡為曲
.
(Ⅰ)求曲線
的方程;
(Ⅱ)若點
,
,
是
上的不同三點,且滿足
.證明:
不可能為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形
中,
分別為四邊的中點,且都在坐標軸上,設(shè)
,
.![]()
(Ⅰ)求直線
與
的交點
的軌跡
的方程;
(Ⅱ)過圓![]()
上一點
作圓的切線與軌跡
交于
兩點,若
,試求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,己知直線l與拋物線
相切于點P(2,1),且與x軸交于點A,定點B(2,0).![]()
(1)若動點M滿足
,求點M軌跡C的方程:
(2)若過點B的直線
(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com