【題目】已知函數f(x)=(log2x)2﹣4log2x+1.
(1)求f(8)的值;
(2)當2≤x≤16時,求f(x)的最大值和最小值.
科目:高中數學 來源: 題型:
【題目】已知各項均為整數的數列{an}滿足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N* .
(1)若m=1,n=2,寫出所有滿足條件的數列{an};
(2)設滿足條件的{an}的個數為f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,試求m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為
(單位:元),繼續購買該險種的投保人稱為續保人,
續保人本年度的保費與其上年度出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 |
|
保費 |
|
|
|
|
|
|
隨機調查了該險種的400名續保人在一年內的出險情況,得到如下統計表:
出險次數 | 0 | 1 | 2 | 3 | 4 |
|
頻數 | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)記A為事件:“一續保人本年度的保費不高于基本保費”.求
的估計值;
(Ⅱ)記B為事件:“一續保人本年度的保費高于基本保費但不高于基本保費的190%”.
求
的估計值;
(III)求續保人本年度的平均保費估計值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“累積凈化量
”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據
《空氣凈化器》國家標準,對空氣凈化器的累計凈化量
有如下等級劃分:
累積凈化量(克) |
|
|
| 12以上 |
等級 |
|
|
|
|
為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取
臺機器作為樣本進行估計,已知這
臺機器的累積凈化量都分布在區間
中,按照
、
、
、
、
均勻分組,其中累積凈化量在
的所有數據有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
![]()
(1)求
的值及頻率分布直方圖中
的值;
(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為
的空氣凈化器有多少臺?
(3)從累積凈化量在
的樣本中隨機抽取2臺,求恰好有1臺等級為
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答
(1)集合M={1,2,(m2﹣3m﹣1)+(m2﹣5m﹣6)i},N={3,﹣1},M∩N={3},求實數m的值.
(2)已知12=
×1×2×3,12+22=
×2×3×5,12+22+32=
×3×4×7,12+22+32+42=
×4×5×9,由此猜想12+22+…+n2(n∈N*)的表達式并用數學歸納法證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x)定義域中任意的x1 , x2(x1≠x2),有如下結論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
③
>0;
④
.
當f(x)=lgx時,上述結論中正確結論的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2﹣16x+q+3:
(1)若函數在區間[﹣1,1]上存在零點,求實數q的取值范圍;
(2)問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區間D,且D的長度為12﹣t.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(﹣4,4)、B(4,4),直線AM與BM相交于點M,且直線AM的斜率與直線BM的斜率之差為﹣2,點M的軌跡為曲線C.
(1)求曲線C 的軌跡方程;
(2)Q為直線y=﹣1上的動點,過Q做曲線C的切線,切點分別為D、E,求△QDE的面積S的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com