【題目】已知函數(shù)f(x)=
+2x+sinx(x∈R),若函數(shù)y=f(x2+2)+f(﹣2x﹣m)只有一個零點,則函數(shù)g(x)=mx+
(x>1)的最小值是 .
【答案】5
【解析】解:∵函數(shù)f(x)=
+2x+sinx滿足﹣f(x)=﹣f(x),
且f′(x)=x2+2+cosx>0恒成立,
故f(x)是R上的單調(diào)奇函數(shù),
令y=f(x2+2)+f(﹣2x﹣m),
所以x2+2=2x+m,即x2﹣2x+2﹣m=0只有一個實數(shù)解,
則△=4﹣4(2﹣m)=0,解得m=1,
g(x)=x+
=x﹣1+
+1≥2
+1=5
所以g(x)的最小值為5,
所以答案是:5.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的奇偶性和基本不等式的相關知識可以得到問題的答案,需要掌握偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱;基本不等式:![]()
,(當且僅當
時取到等號);變形公式:![]()
.
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中說法正確的是( )
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量
,
滿足
,則
與
的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“x0∈R,x02﹣x0≤0”的否定是“x∈R,x2﹣x≥0”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域為R的函數(shù)f(x)滿足f(x+3)=2f(x),當x∈[﹣1,2)時,f(x)=
.
若存在x∈[﹣4,﹣1),使得不等式t2﹣3t≥4f(x)成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=(x+a)(bx+2a)(常數(shù)a、b∈R)是偶函數(shù),且它的值域為(﹣∞,4],則該函數(shù)的解析式f(x)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) f(x)=2x﹣
的定義域為(0,1](a為實數(shù)).
(Ⅰ)當a=﹣1時,求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;
(Ⅲ)求函數(shù)y=f(x)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,
=(2,﹣2),
=(x,y),
=(1,
).
(1)若
∥
,求x,y之間的關系式;
(2)滿足(1)的同時又有
⊥
,求x,y的值以及四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(I)如果
在
處取得極值,求
的值.
(II)求函數(shù)
的單調(diào)區(qū)間.
(III)當
時,過點
存在函數(shù)曲線
的切線,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com