【題目】若干個同學參加數學競賽,其中任何
個同學都有唯一的公共朋友(當甲是乙的朋友時,乙也是甲的朋友).問有多少同學參加數學競賽?
科目:高中數學 來源: 題型:
【題目】為了適應高考改革,某中學推行“創新課堂”教學.高一平行甲班采用“傳統教學”的教學方式授課,高一平行乙班采用“創新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取
名學生的成績進行統計分析,結果如下表:(記成績不低于
分者為“成績優秀”)
分數 |
|
|
|
|
|
|
|
甲班頻數 |
|
|
|
|
|
|
|
乙班頻數 |
|
|
|
|
|
|
|
(Ⅰ)由以上統計數據填寫下面的
列聯表,并判斷是否有
以上的把握認為“成績優秀與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優秀 | |||
成績不優秀 | |||
總計 |
(Ⅱ)現從上述樣本“成績不優秀”的學生中,抽取
人進行考核,記“成績不優秀”的乙班人數為
,求
的分布列和期望.
參考公式:
,其中
.
臨界值表
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知焦點在x軸上,離心率為
的橢圓E的左頂點為A,點A到右準線的距離為6.
![]()
(1)求橢圓E的標準方程;
(2)過點A且斜率為
的直線與橢圓E交于點B,過點B與右焦點F的直線交橢圓E于M點,求M點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓C:
(a>b>0)的離心率為
,且右焦點到右準線l的距離為1.過x軸上一點M(m,0)(m為常數,且m∈(0,2))的直線與橢圓C交于A,B兩點,與l交于點P,D是弦AB的中點,直線OD與l交于點Q.
![]()
(1) 求橢圓C的標準方程.
(2) 試判斷以PQ為直徑的圓是否經過定點.若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
是定義域為R的奇函數.
(1)求實數k的值;
(2)若
,試判斷函數
的單調性,并求不等式
的解集;
(3)若
,設
,
在
上的最小值為-1,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2019·龍泉驛區一中]交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為
元,在下一年續保時,實行的是費率浮動機制,且保費與上一年車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
| 上一個年度未發生有責任道路交通事故 | 下浮 |
| 上兩個年度未發生有責任道路交通事故 | 下浮 |
| 上三個以及以上年度未發生有責任道路交通事故 | 下浮 |
| 上一個年度發生一次有責任不涉及死亡的道路交通事故 |
|
| 上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮 |
| 上一個年度發生有責任道路交通死亡事故 | 上浮 |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了70輛車齡已滿三年該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 |
|
|
|
|
|
|
數量 | 10 | 13 | 7 | 20 | 14 | 6 |
(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損6000元,一輛非事故車盈利10000元,且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商店內有7輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次性購進70輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值(結果用分數表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設關于x的方程x2﹣ax﹣1=0和3x2﹣6x+3﹣2a=0的實根分別為x1,x2和x3,x4.若x1<x3<x2<x4,則實數a的取值范圍為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com