某海域有
、
兩個島嶼,
島在
島正東4海里處。經多年觀察研究發現,某種魚群洄游的路線是曲線
,曾有漁船在距
島、
島距離和為8海里處發現過魚群。以
、
所在直線為
軸,
的垂直平分線為
軸建立平面直角坐標系。![]()
(1)求曲線
的標準方程;(6分)
(2)某日,研究人員在
、
兩島同時用聲納探測儀發出不同頻率的探測信號(傳播速度相同),
、
兩島收到魚群在
處反射信號的時間比為
,問你能否確定
處的位置(即點
的坐標)?(8分)
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
在平面直角坐標系xOy中,拋物線C的頂點在原點,經過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)設直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為
,且過
,設點
.
(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
.已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為
,右焦點
,雙曲線的實軸為
,
為雙曲線上一點(不同于
),直線
,
分別與直線
交于
兩點
(1)求雙曲線的方程;
(2)
是否為定值,若為定值,求出該值;若不為定值,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點,焦點在坐標軸上的橢圓
,它的離心率為
,一個焦點和拋物線
的焦點重合,過直線
上一點M引橢圓
的兩條切線,切點分別是A,B.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若在橢圓
上的點
處的橢圓的切線方程是
. 求證:直線
恒過定點
;并出求定點
的坐標.
(Ⅲ)是否存在實數
,使得
恒成立?(點
為直線
恒過的定點)若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)已知橢圓
經過點
,且其右焦點與拋物線
的焦點F重合.
(Ⅰ)求橢圓
的方程;
(II)直線
經過點
與橢圓
相交于A、B兩點,與拋物線
相交于C、D兩點.求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題16分)設雙曲線:
的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2
,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)設橢圓C1:
的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2:
與
軸的交點為B,且經過F1,F2點.![]()
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設M(0,
),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com