(本小題滿分13分)
如圖,在直三棱柱
(側(cè)棱垂直于底面的棱柱)中,
,
,
,
,點(diǎn)
是
的中點(diǎn). ![]()
(Ⅰ) 求證:
∥平面
;
(Ⅱ)求AC1與平面CC1B1B所成的角.
(Ⅰ)見解析;(Ⅱ) AC1與平面CC1B1B所成的角為60O。
解析試題分析:(1)設(shè)CB1與C1B的交點(diǎn)為E,連接DE,根據(jù)D是AB的中點(diǎn),E是BC1的中點(diǎn),可知DE∥AC1,而DE?平面CDB1,AC1?平面CDB1,根據(jù)線面平行的判定定理可知AC1∥平面CDB1;(2)結(jié)合三棱柱的性質(zhì)可知∠AC1C為AC1與平面CC1B1B所成的角。
證明: (Ⅰ) 令BC1與CB1的交點(diǎn)為E, 連結(jié)DE.
∵ D是AB的中點(diǎn), E為BC1的中點(diǎn), ∴DE∥AC1
∵ AC1
平面CDB1, DE
平面CDB1,
∴AC1∥平面CDB1. ………………6分
(Ⅱ) ∵ 三棱柱ABC-A1B1C1為直三棱柱,
∴ C1C⊥平面ABC, ∴C1C⊥AC,
∵ AC="3," BC="4," AB=5,
∴
, ∴
,
∴ AC⊥平面CC1B1B,
∴ ∠AC1C為AC1與平面CC1B1B所成的角
∵
,![]()
根據(jù)平面幾何知識得:∠AC1C=60O
∴AC1與平面CC1B1B所成的角為60O………13分
考點(diǎn):本題主要考查了直線與平面平行的判定,以及空間兩直線的位置關(guān)系的判定,同時考查學(xué)生空間想象能力,邏輯思維能力,是基礎(chǔ)題。
點(diǎn)評:解決該試題的關(guān)鍵是對于三棱柱性質(zhì)的熟練運(yùn)用和線面平行的判定定理的準(zhǔn)確的運(yùn)用和求解。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在□ABCD中,∠DAB=60°,AB=2,AD="4." 將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD. ![]()
(1)求證:AB⊥DE;
(2)求三棱錐E—ABD的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,在四棱錐
中,底面
為平行四邊形,
平面
,![]()
![]()
在棱
上.![]()
(I)當(dāng)
時,求證
平面![]()
(II)當(dāng)二面角
的大小為
時,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=
.![]()
(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求點(diǎn)C到平面PBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知棱長為a的正方體ABCD—A1B1C1D1,E為BC中點(diǎn).
(1)求B到平面B1ED距離
(2)求直線DC和平面B1ED所成角的正弦值. (12分) ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,直三棱柱ABC?A1B1C1中, AC= BC=
AA1,D是棱AA1的中點(diǎn),DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大小.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)如圖,在直三棱柱
中,
、
分別是
、
的中點(diǎn),點(diǎn)
在
上,
.
求證:(1)EF∥平面ABC;
(2)平面![]()
平面
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分 )如圖,在三棱柱
中,所有的棱長都為2,
.
(1)求證:
;
(2)當(dāng)三棱柱
的體積最大時,
求平面
與平面
所成的銳角的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com