已知
.
(1)已知函數(shù)h(x)=g(x)+ax3的一個極值點為1,求a的取值;
(2) 求函數(shù)
在
上的最小值;
(3)對一切
,
恒成立,求實數(shù)a的取值范圍.
(1)
.(2)
. (3 ![]()
解析試題分析:(1)
,因為1為極值點,
則滿足
,所以
. 4分
(2)
,當(dāng)
,
,
單調(diào)遞減,
當(dāng)
時,
,
單調(diào)遞增. 6分
①
,t無解;
②
,即
時,
;
③
,即
時,
在
上單調(diào)遞增,
;
所以
. 8分
(3)
,則
,設(shè)
, 10分
則
,
,
,
單調(diào)遞減,
,
,
單調(diào)遞增,所以
,
因為對一切
,
恒成立,所以
; 12分
考點:本題考查了導(dǎo)數(shù)的運用
點評:此類問題是在知識的交匯點處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識融合在一起進(jìn)行考查,重點考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
若函數(shù)
在
和
處取得極值,試求
的值;
在(1)的條件下,當(dāng)
時,
恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
為大于零的常數(shù)。
(1)若函數(shù)
內(nèi)調(diào)遞增,求a的取值范圍;
(2)求函數(shù)
在區(qū)間[1,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
(1)求函數(shù)
在
上的最小值;
(2)若函數(shù)
與
的圖像恰有一個公共點,求實數(shù)a的值;
(3)若函數(shù)
有兩個不同的極值點
,且
,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
.
(1)討論函數(shù)
在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)
在
處取得極值,對![]()
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求曲線
在點
處的切線方程;
(2)直線
為曲線
的切線,且經(jīng)過原點,求直線
的方程及切點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(a>0,b,cÎR),曲線
在點P(0,f (0))處的切線方程為
.
(Ⅰ)試確定b、c的值;
(Ⅱ)是否存在實數(shù)a使得過點(0,2)可作曲線
的三條不同切線,若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com