【題目】設函數f(x)=
,其中a∈R.
(1)若a=1,f(x)的定義域為區間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域為區間(0,+∞),求a的取值范圍,使f(x)在定義域內是單調減函數.
【答案】
(1)解:f(x)=
=
=a﹣
,
設x1,x2∈R,則f(x1)﹣f(x2)=
﹣ ![]()
=
.
當a=1時,f(x)=1﹣
,設0≤x1<x2≤3,
則f(x1)﹣f(x2)=
,
又x1﹣x2<0,x1+1>0,x2+1>0,
∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2).
∴f(x)在[0,3]上是增函數,
∴f(x)max=f(3)=1﹣
=
,f(x)min=f(0)=1﹣
=﹣1
(2)解:設x1>x2>0,則x1﹣x2>0,x1+1>0,x2+1>0.
若使f(x)在(0,+∞)上是減函數,只要f(x1)﹣f(x2)<0,而f(x1)﹣f(x2)=
,
∴當a+1<0,即a<﹣1時,有f(x1)﹣f(x2)<0,
∴f(x1)<f(x2).
∴當a<﹣1時,f(x)在定義域(0,+∞)內是單調減函數
【解析】由于本題兩個小題都涉及到函數的單調性的判斷,故可先設x1 , x2∈R,得到f(x1)﹣f(x2)差,將其整理成幾個因子的乘積(1)將a=1的值代入,判斷差的符號得出函數的單調性,即可確定函數在區間[0,3]的最大值,計算出結果即可(2)由于函數是定義域(0,+∞)是減函數,設x1>x2>0,則有f(x1)﹣f(x2)<0,由此不等式即可得出參數的取值范圍.
【考點精析】本題主要考查了函數的值域和函數單調性的性質的相關知識點,需要掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的;函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
(a∈R).
(Ⅰ)求f(x)在區間[-1,2]上的最值;
(Ⅱ)若過點P(1,4)可作曲線y=f(x)的3條切線,求實數a的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調查公司在一服務區從七座以下小型汽車中按進服務區的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速(
)分成六段:
,
,
,
,
,
,后得到如圖的頻率分布直方圖.
![]()
(1)求這40輛小型車輛車速的眾數和中位數的估計值;
(2)若從車速在
的車輛中任抽取2輛,求車速在
的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=bax(a,b為常數且a>0,a≠1)的圖象經過點A(1,8),B(3,32)
(1)試求a,b的值;
(2)若不等式(
)x+(
)x﹣m≥0在x∈(﹣∞,1]時恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,已知曲線
的參數方程為
(
,
為參數).以坐標原點
為極點,
軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)當
時,求曲線
上的點到直線
的距離的最大值;
(Ⅱ)若曲線
上的所有點都在直線
的下方,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com