已知兩點
,直線AM、BM相交于點M,且這兩條直線的斜率之積為
.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標為1,直線PE、PF與圓
(
)相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標原點).
(Ⅰ)
(
);(Ⅱ)
.
解析試題分析:(Ⅰ)設點
的坐標為
則,
,化簡可得軌跡方程.
(Ⅱ)設出直線PE、PF的點斜式方程,分別求出它們與圓
(
)相切條件下與曲線C的另一交個交點Q、R.的坐標,寫出直線
的方程,點到直線的距離公式可求
的底邊
上的高.進而得出
面積的表達式,再探索用基本不等式求該式最值的方法.
試題解析:(Ⅰ)設點
,
2分
整理得點M所在的曲線C的方程:
(
) 3分![]()
(Ⅱ)由題意可得點P(
) 4分
因為圓
的圓心為(1,0),
所以直線PE與直線PF的斜率互為相反數 5分
設直線PE的方程為
,
與橢圓方程聯立消去
,得:
, 6分
由于
1是方程的一個解,
所以方程的另一解為
7分
同理
8分
故直線RQ的斜率為
=
9分
把直線RQ的方程
代入橢圓方程,消去
整理得![]()
所以
10分
原點O到直線RQ的距離為
11分
12分
考點:1、動點軌跡方程的求法;2、直線與圓、圓錐曲線的位置關系;3、基本不等式的應用.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知點
,
是動點,且
的三邊所在直線的斜率滿足
.
(1)求點
的軌跡
的方程;
(2)若
是軌跡
上異于點
的一個點,且
,直線
與
交于點
,問:是否存在點
,使得
和
的面積滿足
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點
和
,圓
是以
為圓心,半徑為
的圓,點
是圓
上任意一點,線段
的垂直平分線
和半徑
所在的直線交于點
.
(Ⅰ)當點
在圓上運動時,求點
的軌跡方程
;
(Ⅱ)已知
,
是曲線
上的兩點,若曲線
上存在點
,滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:![]()
的一個焦點是(1,0),兩個焦點與短軸的一個端點構成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設點A關于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的離心率為
且與雙曲線
:
有共同焦點.
(1)求橢圓
的方程;
(2)在橢圓
落在第一象限的圖像上任取一點作
的切線
,求
與坐標軸圍成的三角形的面積的最小值;
(3)設橢圓
的左、右頂點分別為
,過橢圓
上的一點
作
軸的垂線交
軸于點
,若
點滿足
,
,連結
交
于點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左、右焦點分別為
、
,
為原點.
(1)如圖1,點
為橢圓
上的一點,
是
的中點,且
,求點
到
軸的距離;![]()
(2)如圖2,直線
與橢圓
相交于
、
兩點,若在橢圓
上存在點
,使四邊形
為平行四邊形,求
的取值范圍.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,長軸長為
,且點
在橢圓
上.
(1)求橢圓
的方程;
(2)設
是橢圓
長軸上的一個動點,過
作方向向量
的直線
交橢圓
于
、
兩點,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:
=1(
)過點M(2,
), N(
,1),
為坐標原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且
?若存在,寫出該圓的方程;若不存在,說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com