【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的極坐標方程;
(2)射線
與曲線
分別交于
兩點(異于原點
),定點
,求
的面積.
【答案】(1)
;(2)
.
【解析】
(1)將曲線C1化成直角坐標方程,再化成極坐標方程;(2)先求出定點M到射線的距離
為三角形的高,再由極坐標方程求出弦長|AB|為三角形的底,根據面積公式求解即可.
(1)解:曲線C1直角坐標方程為:x2+y2﹣4y=0,
由ρ2=x2+y2,ρsinθ=y得:
曲線C1極坐標方程為ρ=4sinθ,
(2)法一:M到射線θ=
的距離為d=2sin
=
,
|AB|=ρB﹣ρA=4(sin
﹣cos
)=2(
﹣1)
則S△MAB=
|AB|×d=3﹣
.
法二:
解:將θ=
(ρ≥0)化為普通方程為y=
x(x≥0),
∵曲線C2的極坐標方程為ρ=4cosθ,即ρ2=4ρcosθ,
由ρ2=x2+y2,ρcosθ=x得:
曲線C2的直角坐標方程為x2+y2﹣4x=0,
由
得
∴A(
,3)
得
∴B(1,
),
,
點M到直線
,
∴
.
科目:高中數學 來源: 題型:
【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿易自由化和經濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經貿交流合作,促進全球貿易和世界經濟增長,推動開放世界經濟發展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調查,并得到如下
列聯表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據列聯表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調查者中按男女分層抽樣的方法抽取7人了解他們從事的職業情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:
.
參考數據:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數,簡稱“六藝”,某高中學校為弘揚“六藝”的傳統文化,分別進行了主題為“禮、樂、射、御、書、數”六場傳統文化知識競賽,現有甲、乙、丙三位選手進入了前三名的最后角逐,規定:每場知識競賽前三名的得分都分別為![]()
且
;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為
分,乙和丙最后得分都是
分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場比賽獲得第三名
B. 每場比賽第一名得分
為![]()
C. 甲可能有一場比賽獲得第二名
D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
,其中e為自然對數的底數.
(1)當a=0時,求函數f (x)的單調減區間;
(2)已知函數f (x)的導函數f (x)有三個零點x1,x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數f (x)的兩個零點,證明:x1m1x1 1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節大豆新品種一天內發芽數之間的關系進行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖甲),以及實驗室每天每100顆種子中的發芽數情況(如圖乙),得到如下資料:
![]()
最高溫度
最低溫度
甲
![]()
乙
(1)請畫出發芽數y與溫差x的散點圖;
(2)若建立發芽數y與溫差x之間的線性回歸模型,請用相關系數說明建立模型的合理性;
(3)①求出發芽數y與溫差x之間的回歸方程
(系數精確到0.01);
②若12月7日的晝夜溫差為
,通過建立的y關于x的回歸方程,估計該實驗室12月7日當天100顆種子的發芽數.
參考數據:![]()
![]()
![]()
.
參考公式:
相關系數:
(當
時,具有較強的相關關系).
回歸方程
中斜率和截距計算公式:![]()
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com