(本題共9分)如圖,在△ACB中,∠AC
B = 90°,AC = 4,BC =
2,點(diǎn)P為線段CA(不包括端點(diǎn))上的一個動點(diǎn),以
為圓心,1為半徑作
.
(1)連結(jié)
,若
,試判斷
與直線AB的位置關(guān)系,并說明理由;
(2)當(dāng)線段PC等于多少時,
與直線AB相切?
(3)當(dāng)
與直線AB相交時,寫出線段PC的取值范圍。
(第(3)問直接給出結(jié)果,不需要解題過程)![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點(diǎn).
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點(diǎn)A、B分別為圓C1、C2上任意一點(diǎn),求|AB|的最小值;
(3)已知直線l上一點(diǎn)M在第一象限,兩質(zhì)點(diǎn)P、Q同時從原點(diǎn)出發(fā),點(diǎn)P以每秒1個單位的速度沿x軸正方向運(yùn)動,點(diǎn)Q以每秒
個單位沿射線OM方向運(yùn)動,設(shè)運(yùn)動時間為t秒.問:當(dāng)t為何值時直線PQ與圓C1相切?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知直線![]()
,圓
.
(Ⅰ)證明:對任意
,直線
與圓
恒有兩個公共點(diǎn).
(Ⅱ)過圓心
作
于點(diǎn)
,當(dāng)
變化時,求點(diǎn)
的軌跡
的方程.
(Ⅲ)直線
與點(diǎn)
的軌跡
交于點(diǎn)
,與圓
交于點(diǎn)
,是否存在
的值,使得
?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且
=a,
=b(a>2,b>2).
(Ⅰ)求線段AB中點(diǎn)的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知圓
的圓心為
,圓
:
的圓心為
,一動圓與圓
內(nèi)切,與圓
外切.
(Ⅰ)求動圓圓心
的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn)
,使得
為鈍角?若存在,求出點(diǎn)
橫坐標(biāo)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題8分)
已知直線
(
為參數(shù)),圓
(
為參數(shù)).
(Ⅰ)當(dāng)
時,試判斷直線
與圓
的位置關(guān)系;
(Ⅱ)若直線
與圓
截得的弦長為1,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)
是關(guān)于t的方程
的兩個不等實(shí)根,則過
,
兩點(diǎn)的直線與雙曲線
的公共點(diǎn)的個數(shù)為
| A.3 | B.2 | C.1 | D.0 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com