【題目】已知曲線上一動點P(x,y)(x>0)到定點F(
,0)的距離與它到直線l:x
的距離的比是
.
(1)求動點P的軌跡E的方程;
(2)若M是曲線E上的一個動點,直線l′:y=x+4,求點M到直線l′的距離的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標系xOy中,橢圓C:
(a>b>0)的上頂點到焦點的距離為2,離心率為
.
(1)求a,b的值.
(2)設P是橢圓C長軸上的一個動點,過點P作斜率為k的直線l交橢圓C于A、B兩點.
(ⅰ)若k=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點P的位置無關,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動隊從
四位運動員中選拔一人參加某項賽事,在選拔結(jié)果公布前,甲、乙、丙、丁四位教練對這四位運動員預測如下:甲說:“是
或
被選中”; 乙說:“是
被選中”;丙說:“
,
均未被選中”; 丁說:“是
被選中”.若這四位教練中只有兩位說的話是對的,則獲得參賽資格的運動員是____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在常數(shù)
,使得對定義域
內(nèi)的任意
,都有
成立,則稱函數(shù)
在其定義域
上是“
利普希茲條件函數(shù)”.
(1)若函數(shù)
是“
利普希茲條件函數(shù)”,求常數(shù)
的最小值;
(2)判斷函數(shù)
是否是“
利普希茲條件函數(shù)”,若是,請證明,若不是,請說明理由;
(3)若
是周期為2的“
利普希茲條件函數(shù)”,證明:對任意的實數(shù)
,都有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了50人,他們年齡大點頻率分布及支持“生育二胎”人數(shù)如下表:
年齡 |
|
|
|
|
|
|
頻率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
![]()
(2)若對年齡在
的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):
,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關平面向量分解定理的四個命題:
(1)一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
(2)一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.
其中正確命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進入千千萬萬的家庭.大部分的車主在購買汽車時,會在轎車或者
中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計:
購買了轎車(輛) | 購買了 | |
|
|
|
|
|
|
![]()
(1)根據(jù)表,是否有
的把握認為年齡與購買的汽車車型有關?
(2)圖給出的是
名車主上一年汽車的行駛里程,求這
名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)用分層抽樣的方法從
歲以上車主中抽取
人,再從這
人中隨機抽取
人贈送免費保養(yǎng)券,求這
人中至少有
輛轎車的概率。
附:
,![]()
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點P在圓柱
的底面圓
上,AB為圓
的直徑,圓柱
的表面積為20π,![]()
![]()
(1)求異面直線
與AP所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)求點A到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABD﹣A1B1C1D1中四邊形A1B1C1D1,ADD1A1.ABB1A1均為正方形.點M是BD的中點.點H在線段C1M上,且A1H與平面ABD所成角的正弦值為
.
![]()
(Ⅰ)證明:B1D1∥平面BC1D:
(Ⅱ)求二面角A﹣A1H﹣B的的正弦值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com