(本題滿分14分)
在平面直角坐標(biāo)系中,已知向量
(
),
,動(dòng)點(diǎn)
的軌跡為T.
(1)求軌跡T的方程,并說(shuō)明該方程表示的曲線的形狀;
(2)當(dāng)
時(shí),已知
、
,試探究是否存在這樣的點(diǎn)
:
是軌跡T內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且△OEQ的面積
?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由.
當(dāng)
時(shí),方程表示兩條與x軸平行的直線;(答方程表示兩條直線不扣分)--------------- ------3分
當(dāng)
時(shí),方程表示以原點(diǎn)為圓心,4為半徑的圓;(答方程表示圓不扣分)- ---------4分
當(dāng)
且
時(shí),方程表示橢圓;--------------------------------5分
當(dāng)
時(shí),方程表示雙曲線.-
![]()
.-
解:(1)∵
∴![]()
得
即
------------------------------------2分
當(dāng)
時(shí),方程表示兩條與x軸平行的直線;(答方程表示兩條直線不扣分)--------------- ------3分
當(dāng)
時(shí),方程表示以原點(diǎn)為圓心,4為半徑的圓;(答方程表示圓不扣分)- ---------4分
當(dāng)
且
時(shí),方程表示橢圓;--------------------------------5分
當(dāng)
時(shí),方程表示雙曲線.-------------- ---------------------6分
(2)由(1)知,當(dāng)
時(shí),軌跡T的方程為:
.
連結(jié)OE,易知軌跡T上有兩個(gè)點(diǎn)A
,B
滿足
,
分別過A、B作直線OE的兩條平行線
、
.
∵同底等高的兩個(gè)三角形的面積相等
∴符合條件的點(diǎn)均在直線
、
上. --------------------------------7分
∵
∴直線
、
的方程分別為:
、
--------8分
設(shè)點(diǎn)
(
)∵
在軌跡T內(nèi),∴
-----------------------9分
分別解
與
得
與![]()
∵
∴
為偶數(shù),在
上
,對(duì)應(yīng)的![]()
在
上
,對(duì)應(yīng)的
-----------------------13分
∴滿足條件的點(diǎn)
存在,共有6個(gè),它們的坐標(biāo)分別為:
![]()
.------------------------------------------14分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若A
CRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)
是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動(dòng)點(diǎn)
滿足
。
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)已知點(diǎn)
,在動(dòng)點(diǎn)
的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請(qǐng)求出一個(gè)長(zhǎng)度為
的區(qū)間
,使![]()
![]()
;如果沒有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為
).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com