【題目】某區(qū)選派7名隊員代表本區(qū)參加全市青少年圍棋錦標(biāo)賽,其中3名來自A學(xué)校且1名為女棋手,另外4名來自B學(xué)校且2名為女棋手
從這7名隊員中隨機(jī)選派4名隊員參加第一階段的比賽
求在參加第一階段比賽的隊員中,恰有1名女棋手的概率;
Ⅱ
設(shè)X為選出的4名隊員中A、B兩校人數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐
中,底面
是矩形,
平面
,AB 1,AP AD 2.
(1)求直線
與平面
所成角的正弦值;
(2)若點M,N分別在AB,PC上,且
平面
,試確定點M,N的位置.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD為菱形,且
,
平面ABCD,
,且
,
.
![]()
Ⅰ
求證:
平面ACF;
Ⅱ
求直線AE與平面ACF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,
平面
,四邊形
為正方形,四邊形
為梯形,且
,
,
,
.
![]()
(1)求直線
與平面
所成角的正弦值;
(2)線段
上是否存在點
,使得直線
平面
?若存在,求
的值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動點
分別與兩個定點
,
的連線的斜率之積為
.
(1)求動點
的軌跡
的方程;
(2)設(shè)過點
的直線與軌跡
交于
,
兩點,判斷直線
與以線段
為直徑的圓的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知服從正態(tài)分布
的隨機(jī)變量在區(qū)間
,
,
內(nèi)取值的概率分別為0.6826,0.9544,0.9974.若某種袋裝大米的質(zhì)量
(單位:
)服從正態(tài)分布
,任意選一袋這種大米,質(zhì)量在
的概率為_.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x∈R,x2+2x≥a,q:x2﹣4x+3≤0,r:(x﹣m)[x﹣(m+1)]≤0.
(1)若命題p的否定是假命題,求實數(shù)a的取值范圍;
(2)若q是r的必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為
:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對其進(jìn)行檢驗;若仍不合格,作為廢品處理,再檢合格率為
.每臺儀器各項費(fèi)用如表:
項目 | 生產(chǎn)成本 | 檢驗費(fèi)/次 | 調(diào)試費(fèi) | 出廠價 |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤
出廠價
生產(chǎn)成本
檢驗費(fèi)
調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺儀器是否合格相互獨(dú)立,記
為生產(chǎn)兩臺儀器所獲得的利潤,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),將曲線
上所有點的橫坐標(biāo)縮短為原來的
,縱坐標(biāo)縮短為原來的
,得到曲線
,在以坐標(biāo)原點
為極點,
軸的正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線
的極坐標(biāo)方程及直線
的直角坐標(biāo)方程;
(2)設(shè)點
為曲線
上的任意一點,求點
到直線
的距離的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com