已知橢圓
左、右焦點分別為F1、F2,點P(2,
),點F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)設直線
與橢圓C交于M、N兩點,直線F2M與F2N的斜率互為相反數(shù),求證:直線l過定點,并求該定點的坐標.
(1)
;(2)詳見解析.
解析試題分析:(1)根據(jù)橢圓的離心率求得a和c的關系,進而根據(jù)橢圓C的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0)又點F2在線段PF1的中垂線上,推斷|F1F2|=|PF2|,進而求得c,則a和b可得,進而求得橢圓的標準方程.(2)設直線MN方程為y=kx+m,與橢圓方程聯(lián)立消去y,設M(x1,y1),N(x2,y2),根據(jù)韋達定理可表示出x1+x2和x1x2,表示出直線F2M和F2N的斜率,由直線F2M與F2N的斜率互為相反數(shù),可推斷兩直線斜率之和為0,把x1+x2和x1x2代入即可求得k和m的關系,代入直線方程進而可求得直線過定點.
解:(1)由橢圓C的離心率
得
,其中
,橢圓C的左、右焦點分別為
又點F2在線段PF1的中垂線上
解得![]()
(2)由題意,知直線MN存在斜率,設其方程為![]()
由![]()
消去
設![]()
則
且
(8分)
由已知,得![]()
化簡,得
(10分)
整理得![]()
直線MN的方程為
,
因此直線MN過定點,該定點的坐標為(2,0) (12分).
考點:1.橢圓的標準方程;2.恒過定點的直線;3.直線與圓錐曲線的綜合問題.
科目:高中數(shù)學 來源: 題型:解答題
已知點
,
的坐標分別為
,
.直線
,
相交于點
,且它們的斜率之積是
,記動點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設
是曲線
上的動點,直線
,
分別交直線
于點
,線段
的中點為
,求直線
與直線
的斜率之積的取值范圍;
(3)在(2)的條件下,記直線
與
的交點為
,試探究點
與曲線
的位置關系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點
是拋物線
上不同的兩點,點
在拋物線
的準線
上,且焦點
到直線
的距離為
.
(I)求拋物線
的方程;
(2)現(xiàn)給出以下三個論斷:①直線
過焦點
;②直線
過原點
;③直線
平行
軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結論,寫出一個正確的命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
的中心在坐標原點,對稱軸為坐標軸,焦點在
軸上,有一個頂點為
,
.
(1)求橢圓
的方程;
(2)過點
作直線
與橢圓
交于
兩點,線段
的中點為
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的兩個焦點分別為
,且點
在橢圓C上,又
.
(1)求焦點F2的軌跡
的方程;
(2)若直線
與曲線
交于M、N兩點,以MN為直徑的圓經(jīng)過原點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線
:
和
:![]()
的焦點分別為
,
交于
兩點(
為坐標原點),且![]()
.
(1)求拋物線
的方程;
(2)過點
的直線交
的下半部分于點
,交
的左半部分于點
,點
坐標為
,求△
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定點![]()
與分別在
軸、
軸上的動點
滿足:
,動點
滿足
.
(1)求動點
的軌跡的方程;
(2)設過點
任作一直線與點
的軌跡交于
兩點,直線
與直線
分別交于點
(
為坐標原點);
(i)試判斷直線
與以
為直徑的圓的位置關系;
(ii)探究
是否為定值?并證明你的結論.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com