(本小題滿分12分)已知橢圓C:
(
.![]()
(1)若橢圓的長軸長為4,離心率為
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點
的直線
與橢圓C交于不同的兩點
,且
為銳角(其中
為坐標(biāo)原點),求直線
的斜率k的取值范圍;
(3)如圖,過原點
任意作兩條互相垂直的直線與橢圓
(
)相交于
四點,設(shè)原點
到四邊形
一邊的距離為
,試求
時
滿足的條件.
(1)
(2)
(3)![]()
解析試題分析:(1)![]()
![]()
……2分
(2)顯然直線x=0不滿足題設(shè)條件,可設(shè)直線l:![]()
由
得
.
,
……4分
(1)
又![]()
由
∴
所以![]()
(2)由(1)(2)得
。……6分
(3)由橢圓的對稱性可知PQSR是菱形,原點O到各邊的距離相等。
當(dāng)P在y軸上,Q在x軸上時,直線PQ的方程為
,由d=1得
,……
當(dāng)P不在y軸上時,設(shè)直線PS的斜率為k,
,則直線RQ的斜率為
,![]()
由
,得
……(1),同理
……(2) ……8分
在Rt△OPQ中,由
,即![]()
所以
,化簡得
,
,即
。
綜上,d=1時a,b滿足條件
……12分
考點:橢圓方程及性質(zhì),直線與橢圓相交問題
點評:直線與橢圓相交聯(lián)立方程利用韋達(dá)定理設(shè)而不求是常用的思路,第二問中將夾角是銳角時轉(zhuǎn)化為向量數(shù)量積小于零,從而可用點的坐標(biāo)表示,
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點M是圓C:
上的一點,且![]()
軸,
為垂足,點
滿足
,記動點
的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動弦,O為坐標(biāo)原點,求
面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓![]()
的離心率為
,定點
,橢圓短軸的端點是
,
,且
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)過點
且斜率不為
的直線交橢圓
于
,
兩點.試問
軸上是否存在定點
,使
平分
?若存在,求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
分別是橢圓的
左,右焦點。
(Ⅰ)若
是第一象限內(nèi)該橢圓上的一點,且![]()
,求點
的坐標(biāo)。
(Ⅱ)設(shè)過定點
的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標(biāo)原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知點
在橢圓C:
上,且橢圓C的離心率
.![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點
作直線交橢圓C于點A.B.△ABQ的垂心為T,是否存在實數(shù)m ,使得垂心T在y軸上.若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知三點
,曲線
上任一點
滿足
=![]()
(1) 求曲線
的方程;
(2) 設(shè)
是(1)中所求曲線
上的動點,定點
,線段
的垂直平分線與
軸交于點
,求實數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的中心在坐標(biāo)原點、對稱軸為坐標(biāo)軸,且拋物線
的焦點是它的一個焦點,又點
在該橢圓上.
(1)求橢圓
的方程;
(2)若斜率為
直線
與橢圓
交于不同的兩點
,當(dāng)
面積的最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知直線l1:4x:-3y+6=0和直線l2x=-p/2:.若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(I )求拋物線C的方程;
(II)若以拋物線上任意一點M為切點的直線l與直線l2交于點N,試問在x軸上是否存 在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com