【題目】如圖所示,在棱長(zhǎng)為1的正方體
中,點(diǎn)
在
上移動(dòng),點(diǎn)
在
上移動(dòng),
,連接
.
![]()
(1)證明:對(duì)任意
,總有
平面
;
(2)當(dāng)
為何值時(shí),
的長(zhǎng)度最小?
【答案】(1)證明見(jiàn)解析(2)![]()
【解析】
(1)作
,交
于點(diǎn)
,作
,交
于點(diǎn)
,連接
,根據(jù)平行線成比例定理,結(jié)合已知,可以證明出四邊形
為平行四邊形,利用平行四邊形的性質(zhì),線面平行的判定定理證明即可;
(2)根據(jù)平行線成比例定理,通過(guò)計(jì)算可以求出
的值,利用勾股定理求出
的表達(dá)式,運(yùn)用配方法求出
的長(zhǎng)度最小值.
(1)證明:如圖,作
,交
于點(diǎn)
,作
,交
于點(diǎn)
,連接
.
因?yàn)?/span>
是正方形,所以有
,因此有
,因?yàn)?/span>
,所以
,同理可證明
,因此
,則四邊形
為平行四邊形,
.又
平面
,
平面
,
平面
.
(2)由(1)知四邊形
為平行四邊形,
.
,
,
即
,
![]()
![]()
![]()
故當(dāng)
時(shí),
的長(zhǎng)度有最小值,最小值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓C:
(a>b>0)的離心率為
,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為
.不過(guò)原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ) 求
ABP的面積取最大時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
是定義在R上的函數(shù),對(duì)
∈R都有
,且當(dāng)
>0時(shí),
<0,且
=1.
(1)求
的值;
(2)求證:
為奇函數(shù);
(3)求
在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家提出的“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”的號(hào)召,小李同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè)。經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬(wàn)元,每年生產(chǎn)
萬(wàn)件,需另投入流動(dòng)成本為
萬(wàn)元,且
,每件產(chǎn)品售價(jià)為10元。經(jīng)市場(chǎng)分析,生產(chǎn)的產(chǎn)品當(dāng)年能全部售完。
(1)寫(xiě)出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(萬(wàn)件)的函數(shù)解析式;
(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)
(2)年產(chǎn)量為多少萬(wàn)件時(shí),小李在這一產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)隨機(jī)選取了
名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問(wèn)題.
(Ⅰ)求
的值及樣本中男生身高在
(單位:
)的人數(shù);
(Ⅱ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過(guò)樣本估計(jì)該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在
和
(單位:
)內(nèi)的男生中任選兩人,求這兩人的身高都不低于
的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,過(guò)右焦點(diǎn)作垂直于橢圓長(zhǎng)軸的直線交橢圓于
兩點(diǎn),且
為坐標(biāo)原點(diǎn).
(1)求橢圓
的方程;
(2) 設(shè)直線
與橢圓
相交于
兩點(diǎn),若
.
①求
的值;
②求
的面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)的離心率為
,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷
是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,過(guò)拋物線的焦點(diǎn)且斜率為1的直線與拋物線交于A、B兩點(diǎn),若
.
(1)求拋物線的方程;
(2)若AB的中垂線交拋物線于C、D兩點(diǎn),求過(guò)A、B、C、D四點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)的普及,大學(xué)生迷戀手機(jī)的現(xiàn)象非常嚴(yán)重.為了調(diào)查雙休日大學(xué)生使用手機(jī)的時(shí)間,某機(jī)構(gòu)采用不記名方式隨機(jī)調(diào)查了使用手機(jī)時(shí)間不超過(guò)10小時(shí)的50名大學(xué)生,將50人使用手機(jī)的時(shí)間分成5組:
,
,
,
,
分別加以統(tǒng)計(jì),得到下表,根據(jù)數(shù)據(jù)完成下列問(wèn)題:
使用時(shí)間/時(shí) |
|
|
|
|
|
大學(xué)生/人 | 5 | 10 | 15 | 12 | 8 |
![]()
(1)完成頻率分布直方圖,并根據(jù)頻率分布直方圖估計(jì)大學(xué)生使用手機(jī)時(shí)間的中位數(shù)(保留小數(shù)點(diǎn)后兩位);
(2)用分層抽樣的方法從使用手機(jī)時(shí)間在區(qū)間
,
,
的大學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人取自不同使用時(shí)間區(qū)間的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com