科目:高中數學 來源: 題型:解答題
如圖所示,某人想制造一個支架,它由四根金屬桿
構成,其底端三點
均勻地固定在半徑為
的圓
上(圓
在地面上),
三點相異且共線,
與地面垂直. 現要求點
到地面的距離恰為
,記用料總長為
,設
.![]()
(1)試將
表示為
的函數,并注明定義域;
(2)當
的正弦值是多少時,用料最省?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)本題有2個小題,第一小題滿分6分,第二小題滿分1分.
設常數
,函數![]()
(1)若
=4,求函數
的反函數
;
(2)根據
的不同取值,討論函數
的奇偶性,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x+
(x≠0,a∈R).
(1)當a=4時,證明:函數f(x)在區間[2,+∞)上單調遞增;
(2)若函數f(x)在[2,+∞)上單調遞增,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定義在區間(0,+∞)上的函數f(x)滿足f
=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定義函數
(
為定義域)圖像上的點到坐標原點的距離為函數的
的模.若模存在最大值,則稱之為函數
的長距;若模存在最小值,則稱之為函數
的短距.
(1)分別判斷函數
與
是否存在長距與短距,若存在,請求出;
(2)求證:指數函數
的短距小于1;
(3)對于任意
是否存在實數
,使得函數
的短距不小于2且長距不大于4.若存在,請求出
的取值范圍;不存在,則說明理由?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知奇函數 f (x) 在 (-¥,0)∪(0,+¥) 上有意義,且在 (0,+¥) 上是增函數,f (1) = 0,又函數 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數
.
為常數且![]()
(1)當
時,求
;
(2)若
滿足
,但
,則稱
為
的二階周期點.證明函數
有且僅有兩個二階周期點,并求二階周期點
;
(3)對于(2)中的
,設
,記
的面積為
,求
在區間
上的最大值和最小值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com