【題目】已知橢圓C:
=1的左頂點為A(﹣3,0),左焦點恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A且與圓M相切于點B的直線,交橢圓C于點P,P與橢圓C右焦點的連線交橢圓于Q,若三點B,M,Q共線,求實數m的值.![]()
【答案】解:(Ⅰ)圓M方程變形得:(x+1)2+y2=1﹣m,即M(﹣1,0),∴c=1,
∵頂點A(﹣3,0),∴a=3,
∴b2=a2﹣c2=9﹣1=8,
則橢圓C的方程為
=1;
(Ⅱ)設AP方程為x=ty﹣3(t≠0),代入橢圓方程得:(8t2+9)y2﹣48ty=0,
解得:yA=0,yP=
,
∴xP=tyP﹣3=
,
∵右焦點坐標為(1,0),
∴PQ方程為x=
y+1,代入橢圓方程得:
y2+
y﹣64=0,
∴yPyQ=
,即yQ=
,
∴xQ=
yQ+1=
,
由B,M,Q三點共線,可得MQ⊥AP,即kMQkAP=﹣1,
∴
=﹣1,
解得:t=±
,
∴直線AP方程為x=±
y﹣3,
則圓心M到AP的距離為1,即圓半徑為
=1,
則m=0
【解析】(Ⅰ)圓M方程變形找出M坐標,確定出c的值,由頂點A坐標確定出a的值,進而求出b的值,即可確定出橢圓C的方程;(Ⅱ)設AP方程為x=ty﹣3(t≠0),代入橢圓方程,消去x表示出P的縱坐標,進而表示出橫坐標,再表示出Q坐標,根據B,M,Q三點共線,得到MQ與AP垂直,即直線MQ與直線AP斜率乘積為﹣1,求出t的值,確定出直線AP方程,進而求出m的值.
【考點精析】本題主要考查了橢圓的標準方程的相關知識點,需要掌握橢圓標準方程焦點在x軸:
,焦點在y軸:
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】函數f(x)=xln(ax+1)(a≠0).
(Ⅰ)討論f(x)的單調性;
(Ⅱ)若a>0且滿足:對x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤ln3﹣ln2,試比較ea﹣1與
的大小,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校矩形的航天知識競賽中,參與競賽的文科生與理科生人數之比為1:3,且成績分布在
范圍內,規定分數在80以上(含80)的同學獲獎,按文理科用分層抽樣的放發抽取200人的成績作為樣本,得到成績的頻率分布直方圖.
![]()
(Ⅰ)填寫下面
的列聯表,能否有超過95%的把握認為“獲獎與學生的文理科有關”;
(Ⅱ)將上述調查所得的頻率視為概率,現從參賽學生中,任意抽取3名學生,記“獲獎”學生人數為
,求
的分布列及數學期望.
![]()
附表及公式:
,其中![]()
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=
,其中向量
=(2cosx,1),
=(cosx,
sin2x),x∈R.
(1)求f(x)的最小正周期與單調遞減區間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,且a1=1,an+1=
Sn(n=1,2,3,…).
(1)求數列{an}的通項公式;
(2)當bn=
(3an+1)時,求證:數列
的前n項和Tn=
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數:f(x)=﹣x3﹣3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x﹣1)﹣b+a+3,判斷h(x)的奇偶性,并討論h(x)的單調性;
(2)若g(x)=|f(x)|,設M(a,b)為g(x)在[﹣2,0]的最大值,求M(a,b)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
![]()
(1)求第3,4,5組的頻率;
(2)為了了解最優秀學生的情況,該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com