【題目】事件一:假設某地區有高中生2400人,初中生10900人,小學生11000人.為了了解該地區學生的視力健康狀況,從中抽取
的學生進行調查.事件二:某校為了了解高一年級學生對教師教學的滿意率,打算從高一年級500名學生中抽取50名進行調查.對于事件一和事件二,恰當的抽樣方法分別是( )
A. 系統抽樣,分層抽樣
B. 系統抽樣,簡單隨機抽樣
C. 簡單隨機抽樣,系統抽樣
D. 分層抽樣,系統抽樣
科目:高中數學 來源: 題型:
【題目】若對任意的正整數
,總存在正整數
,使得數列
的前
項和
,則稱
是“回歸數列”.
(
)①前
項和為
的數列
是否是“回歸數列”?并請說明理由.②通項公式為
的數列
是否是“回歸數列”?并請說明理由;
(
)設
是等差數列,首項
,公差
,若
是“回歸數列”,求
的值.
(
)是否對任意的等差數列
,總存在兩個“回歸數列”
和
,使得
成立,請給出你的結論,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.
(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.
(2)從盒中任取一球,記下該球的編號
,將球放回,再從盒中任取一球,記下該球的編號
,求
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:極坐標與參數方程
在平面直角坐標系
中,曲線
的參數方程為
(
為參數).
(1)求曲線
的普通方程;
(2)經過點
(平面直角坐標系
中點)作直線
交曲線
于
,
兩點,若
恰好為線段
的三等分點,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A,B,C分別為△ABC的三邊a,b,c所對的角,向量
=(sin A,sin B),
=(cos B,cos A),且
=sin 2C.
(1)求角C的大小;
(2)若sin A,sin C,sin B成等差數列,且
,求邊c的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,所有棱長均相等,且AA1⊥平面ABC,點D、E、F分別為所在棱的中點.
![]()
(1)求證:EF∥平面CDB1;
(2)求異面直線EF與BC所成角的余弦值;
(3)求二面角B1﹣CD﹣B的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com