【題目】如圖,底面是平行四邊形的四棱錐
中,
,
,且
,若
平面
,則
______.
![]()
【答案】![]()
【解析】
取棱PC上的點F,使![]()
,取棱PD上的點M使![]()
,連接BD.設BD∩AC=O.結(jié)合平行四邊形的性質(zhì)及三角形中位線定理及面面平行的判定定理可得平面BMF∥平面AEC,進而由面面平行的性質(zhì)得到BF∥平面AEC.
存在點F滿足![]()
使BF∥平面AEC
理由如下:
取棱PC上的點F,使![]()
,取棱PD上的點M使![]()
,則E為MD中點,
連接BD.設BD∩AC=O.
連接BM,OE.
∵![]()
=
,F為PC的中點,E是MD的中點,
∴MF∥EC,BM∥OE.
∵MF平面AEC,CE平面AEC,BM平面AEC,OE平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF平面BMF,
∴BF∥平面AEC.
故答案為:![]()
![]()
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在(195,210]內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖
圖1:乙流水線樣本頻率分布直方圖
![]()
表1:甲流水線樣本頻數(shù)分布表
質(zhì)量指標值 | 頻數(shù) |
(190,195] | 9 |
(195,200] | 10 |
(200,205] | 17 |
(205,210] | 8 |
(210,215] | 6 |
(1)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標值的中位數(shù)和平均數(shù)(估算平均數(shù)時,同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)若將頻率視為概率,某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出的不合格品約多少件?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的方程
,焦點為
,已知點
在
上,且點
到點
的距離比它到
軸的距離大1.
(1)試求出拋物線
的方程;
(2)若拋物線
上存在兩動點
(
在對稱軸兩側(cè)),滿足
(
為坐標原點),過點
作直線交
于
兩點,若
,線段
上是否存在定點
,使得
恒成立?若存在,請求出
的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設P為橢圓
1(a>b>0)上任一點,F1、F2為橢圓的焦點,|PF1|+|PF2|=4,離心率為
.
(1)求橢圓的方程;
(2)若直線l:y=kx+m(≠0)與橢圓交于A、B兩點,若線段AB的中點C的直線y
x上,O為坐標原點.求△OAB的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
在
上有意義,實數(shù)
和
滿足
,若
在區(qū)間
上不存在最小值,則稱
在
上具有性質(zhì)
.
(1)當
,且
在區(qū)間
上具有性質(zhì)
時,求常數(shù)
的取值范圍;
(2)已知
,且當
,
,判斷
在區(qū)間
上是否具有性質(zhì)
,請說明理由:
(3)若對于滿足
的任意實數(shù)
和
,
在
上具有性質(zhì)
時,且對任意
,當
時有:
,證明:當
時,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
滿足:
(常數(shù)
),![]()
.數(shù)列
滿足:![]()
.
(1)求![]()
![]()
![]()
的值;
(2)求出數(shù)列
的通項公式;
(3)問:數(shù)列
的每一項能否均為整數(shù)?若能,求出k的所有可能值;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
,函數(shù)
的圖象經(jīng)過
,其導函數(shù)
的圖象是斜率為
,過定點
的一條直線.
(1)討論![]()
的單調(diào)性;
(2)當
時,不等式
恒成立,求整數(shù)
的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com