已知函數
.
(1)若
在
上存在零點,求實數
的取值范圍;
(2)當
時,若對任意的
,總存在
使
成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調控每天產品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:
| 時間(將第x天記為x)x | 1 | 10 | 11 | 18 |
| 單價(元/件)P | 9 | 0 | 1 | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度
(單位:千米/小時)是車流密度
(單位:輛/千米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當
時,車流速度
是車流密度
的一次函數.
(1)當
時,求函數
的表達式;
(2)當車流密度
為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)
可以達到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了保護環境,某工廠在國家的號召下,把廢棄物回收轉化為某種產品,經測算,處理成本
(萬元)與處理量
(噸)之間的函數關系可近似的表示為:
,且每處理一噸廢棄物可得價值為
萬元的某種產品,同時獲得國家補貼
萬元.
(1)當
時,判斷該項舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補貼多少萬元,該工廠才不會虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,為了制作一個圓柱形燈籠,先要制作4個全等的矩形骨架,總計耗用9.6米鐵絲,再用S平方米塑料片制成圓柱的側面和下底面(不安裝上底面).當圓柱底面半徑r取何值時,S取得最大值?并求出該最大值(結果精確到0.01平方米).![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=
在區間[-1,1]上是增函數.
(1)求實數a的值組成的集合A;
(2)設x1、x2是關于x的方程f(x)=
的兩個相異實根,若對任意a∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
我國遼東半島普蘭附近的泥炭層中,發掘出的古蓮子,至今大部分還能發芽開花,這些古蓮子是多少年以前的遺物呢?要測定古物的年代,可用放射性碳法.在動植物的體內都含有微量的放射性14C,動植物死亡后,停止了新陳代謝,14C不再產生,且原有的14C會自動衰變,經過5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經過科學家測定知道,若14C的原始含量為a,則經過t年后的殘余量a′(與a之間滿足a′=a·e-kt).現測得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本為C(x),當年產量不足80千件時,C(x)=
x2+10x(萬元).當年產量不小于80千件時,C(x)=51x+
-1450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關于年產量x(千件)的函數解析式.
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com