【題目】已知雙曲線
的漸近線方程為
,左焦點為F,過
的直線為
,原點到直線
的距離是![]()
(1)求雙曲線的方程;
(2)已知直線
交雙曲線于不同的兩點C,D,問是否存在實數
,使得以CD為直徑的圓經過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
科目:高中數學 來源: 題型:
【題目】已知曲線f(x)=ke﹣2x在點x=0處的切線與直線x﹣y﹣1=0垂直,若x1 , x2是函數g(x)=f(x)﹣|1nx|的兩個零點,則( )
A.1<x1x2< ![]()
B.
<x1x2<1![]()
C.2<x1x2<2 ![]()
D.
<x1x2<2![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點.
(1)求直線
C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG;
(3)求證:平面AA1C⊥面EFG .
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超過x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖. ![]()
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數為X,求X的分布列與數學期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
.
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設
,
是非零向量,則“
,
共線”是“|
|+|
|=|
+
|”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com