如圖,在平面直角坐標(biāo)系
中,設(shè)點(diǎn)
(
),直線
:
,點(diǎn)
在直線
上移動,
是線段
與
軸的交點(diǎn), 過
、
分別作直線
、
,使
,
.![]()
(1)求動點(diǎn)
的軌跡
的方程;
(2)在直線
上任取一點(diǎn)
做曲線
的兩條切線,設(shè)切點(diǎn)為
、
,求證:直線
恒過一定點(diǎn);
(3)對(2)求證:當(dāng)直線
的斜率存在時(shí),直線
的斜率的倒數(shù)成等差數(shù)列.
(1)
.(2)利用導(dǎo)數(shù)法求出直線AB的方程,然后再利用直線橫過定點(diǎn)知識解決.(3)用坐標(biāo)表示出斜率,然后再利用等差中項(xiàng)的知識證明即可
解析試題分析:(1)依題意知,點(diǎn)
是線段
的中點(diǎn),且
⊥
,
∴
是線段
的垂直平分線.∴
.
故動點(diǎn)
的軌跡
是以
為焦點(diǎn),
為準(zhǔn)線的拋物線,其方程為:
.
(2)設(shè)
,兩切點(diǎn)為
,
由
得
,求導(dǎo)得
.
∴兩條切線方程為
①
②
對于方程①,代入點(diǎn)
得,
,又![]()
∴
整理得:![]()
同理對方程②有![]()
即
為方程
的兩根.
∴
③
設(shè)直線
的斜率為
,![]()
所以直線
的方程為
,展開得:
,代入③得:![]()
∴直線恒過定點(diǎn)
.
(3) 證明:由(2)的結(jié)論,設(shè)
,
,
且有
,
∴
∴![]()
![]()
=
又∵
,所以![]()
即直線
的斜率倒數(shù)成等差數(shù)列.
考點(diǎn):本題考查了拋物線與導(dǎo)數(shù)、數(shù)列的綜合考查
點(diǎn)評:解答拋物線綜合題時(shí),應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時(shí)要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長公式及韋達(dá)定理綜合思考,重視對稱思想、函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想的應(yīng)用
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.![]()
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點(diǎn),口寬EF=4米,高3米建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時(shí),所挖的土最少? ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,直線
,
為平面上的動點(diǎn),過點(diǎn)
作
的垂線,垂足為點(diǎn)
,且
.
(1)求動點(diǎn)
的軌跡曲線
的方程;
(2)設(shè)動直線
與曲線
相切于點(diǎn)
,且與直線
相交于點(diǎn)
,試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn)
,使得以
為直徑的圓恒過此定點(diǎn)
?若存在,求出定點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:
(
)離心率為
,上頂點(diǎn)M,右頂點(diǎn)N,直線MN與圓
相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點(diǎn)F,且交E于A、B不同兩點(diǎn).
(1)求E的方程;
(2)若點(diǎn)G(m,0)且| GA|=| GB|,
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是橢圓
的左焦點(diǎn),直線
方程為
,直線
與
軸交于
點(diǎn),
、
分別為橢圓的左右頂點(diǎn),已知
,且
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)
且斜率為
的直線交橢圓于
、
兩點(diǎn),求三角形
面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N (點(diǎn)M在點(diǎn)N的右側(cè)),且
。橢圓D:
的焦距等于
,且過點(diǎn)![]()
![]()
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點(diǎn)M的動直線
與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線
斜率的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
的左焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D、E兩點(diǎn).![]()
(Ⅰ)若點(diǎn)G的橫坐標(biāo)為
,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2.
試問:是否存在直線AB,使得S1=S2?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上的橢圓的離心率為
,且經(jīng)過點(diǎn)
。若分別過橢圓的左右焦點(diǎn)
、
的動直線
、
相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率
、
、
、
滿足
.![]()
(1)求橢圓的方程;
(2)是否存在定點(diǎn)M、N,使得
為定值.若存在,求出M、N點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com