在直角梯形ABCD中,AD//BC,
,
,如圖(1).把
沿
翻折,使得平面
,如圖(2).![]()
(Ⅰ)求證:
;
(Ⅱ)求三棱錐
的體積;
(Ⅲ)在線段
上是否存在點N,使得![]()
?若存在,請求出
的值;若不存在,請說明理由.
(1)根據題意中的平面
,可知得到
,進而得到
,根據線面垂直的性質定理得到結論。
(2)![]()
(3)在線段
上存在點N,使得![]()
,此時![]()
解析試題分析:解:(Ⅰ)∵平面
,
,![]()
∴
, 2分
又∵
,∴
. 4分
(Ⅱ)如圖(1)在
.
.
在
.
∴
. 6分
如圖(2),在
,過點
做
于
,∴
.
, 7分
∴
. 8分
(Ⅲ)在線段
上存在點N,使得![]()
,理由如下:
如圖(2)在
中,
,
∴
, 9分
過點E做
交
于點N,則
,
∵
, 10分
又
,
,
,
又
,∴
.
∴在線段
上存在點N,使得![]()
,此時
. 12分
考點:直線與直線、直線與平面的位置關系
點評:本小題主要考查直線與直線、直線與平面的位置關系、棱錐體積公式等基礎知識,考查空間想象能力、推理論證能力及運算求解能力,考查化歸與轉化思想、數形結合思想
科目:高中數學 來源: 題型:解答題
如圖,平面四邊形
的4個頂點都在球
的表面上,
為球
的直徑,
為球面上一點,且
平面
,
,點
為
的中點.
(1) 證明:平面
平面
;
(2) 求平面
與平面
所成銳二面角的余弦值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角
,如圖二,在二面角
中.![]()
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱柱
中,側棱
底面
,![]()
![]()
(Ⅰ)求證:
平面![]()
(Ⅱ)若直線
與平面
所成角的正弦值為
,求
的值
(Ⅲ)現將與四棱柱
形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為
,寫出
的解析式。(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
正四棱錐
中,
,點M,N分別在PA,BD上,且
.![]()
(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:
∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,
是半圓
的直徑,
是半圓
上除
、
外的一個動點,
平面
,
,
,
,
.![]()
⑴證明:平面
平面
;
⑵試探究當
在什么位置時三棱錐
的體積取得最大值,請說明理由并求出這個最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com