如圖,
為圓
的直徑,點
、
在圓
上,
,矩形
所在的平面與圓
所在的平面互相垂直.已知
,
.![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)求直線
與平面
所成角的大;
(Ⅲ)當
的長為何值時,平面
與平面
所成的銳二面角的大小為
?
科目:高中數學 來源: 題型:解答題
(本題滿分10分)
如圖,已知三棱錐O-ABC的側棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點.![]()
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱錐
中,
底面
,點
,
分別在棱
上,且
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)當
為
的中點時,求
與平面
所成的角的正弦值;
(Ⅲ)是否存在點
使得二面角
為直二面角?若存在,請確定點E的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=
,D是A1B1中點.![]()
(1)求證:C1D⊥AB1 ;
(2)當點F在BB1上什么位置時,會使得AB1⊥平面C1DF?并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐
中,底面
是邊長為
的正方形,
,且
點滿足
. ![]()
(1)證明:
平面
.
(2)在線段
上是否存在點
,使得
平面
?若存在,確定點
的位置,若不存在請說明理由 .
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,三棱柱
中,
平面
,
,
,
為
的中點.![]()
(1)求證:
∥平面
;
(2)求二面角
的余弦值;
(3)設
的中點為
,問:在矩形
內是否存在點
,使得
平面
.若存在,求出點
的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.![]()
(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(端點除外),滿足
.(
)
①求證:對于任意的
,恒有SC∥平面AEF;
②是否存在
,使得△AEF為直角三角形,若存在,求出所有符合條件的
值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=
.
(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com