如圖,已知三棱錐P-ABC中,∠ACB=90°,CB=4,AB=20,D為AB中點,M為PB中點,且△PDB是正三角形,PA⊥PC。
.
(1)求證:DM∥平面PAC;
(2)求證:平面PAC⊥平面ABC;
(3)求三棱錐M-BCD的體積
(1)詳見解析,(2)詳見解析,(3)![]()
解析試題分析:(1)證線面平行找線線平行,本題有中點條件,可利用中位線性質.即DM∥AP,寫定理條件時需完整,因為若缺少DM
面APC,,則DM可能在面PAC內,若缺少AP
面APC,則DM與面PAC位置關系不定.(2)證面面垂直關鍵找線面垂直.可由面面垂直性質定理探討,因為BC垂直AC,而AC為兩平面的交線,所以應有BC垂直于平面PAC,這就是本題證明的首要目標.因為BC垂直AC,因此只需證明BC垂直平面PAC另一條直線.這又要利用線面垂直與線線垂直關系轉化.首先將題目中等量關系轉化為垂直條件,即DM⊥PB,從而有PA⊥PB,而PA⊥PC,所以PA⊥面PBC,因此PA⊥BC.(3)求錐的體積關鍵找出高,有(2)有PA⊥面PBC,因此DM為高,利用體積公式可求得![]()
試題解析:(1)D為AB中點,M為PB中點
DM∥AP
又
DM
面APC,AP
面APC
DM∥面PAC
(2)
△PDB是正三角形,M為PB中點
DM⊥PB,又
DM∥AP,
PA⊥PB
又
PA⊥PC,PB
PC=P,PA⊥面PBC
又
BC
面PBC,
PA⊥BC
又
∠ACB=90°,
BC⊥AC
又
AC
PA=A,
BC⊥面PAC
又
BC
面ABC,
面PAC⊥面ABC
(3)
AB=20,D為AB中點,AP⊥面PBC
PD=10
又
△PDB為正三角形,
DM=5![]()
又
BC=4,PB=10,
PC=2![]()
S△PBC=![]()
![]()
![]()
考點:線面平行判定定理,面面垂直判定定理,錐的體積.
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知
為平行四邊形,
,
,
,點
在
上,
,
,
與
相交于
.現(xiàn)將四邊形
沿
折起,使點
在平面
上的射影恰在直線
上.
(1)求證:
平面
;
(2)求折后直線
與平面
所成角的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知四棱錐P—GBCD中(如圖),PG⊥平面GBCD,GD∥BC,GD=
BC,且BG⊥GC,GB=GC=2,E是BC的中點,PG=4
(Ⅰ)求異面直線GE與PC所成角的余弦值;
(Ⅱ)若F點是棱PC上一點,且
,
,求
的值.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,點D在棱AB上.![]()
(1)求證:AC⊥B1C;
(2)若D是AB中點,求證:AC1∥平面B1CD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為菱形,
,Q為AD的中點.![]()
![]()
(1)若PA=PD,求證:平面
平面PAD;
(2)點M在線段上,PM=tPC,試確定實數(shù)t的值,使PA//平面MQB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正三棱柱ABCA1B1C1中,A1A=
AC,D、E、F分別為線段AC、A1A、C1B的中點.![]()
(1)證明:EF∥平面ABC;
(2)證明:C1E⊥平面BDE.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com