【題目】如圖,四邊形
是等腰梯形,
,
,
,在梯形
中,
,且
,
平面
.![]()
(1)求證:
平面
;
(2)若二面角
的大小為
,求
的長.
【答案】
(1)證明:由已知
,所以
,
又因為
平面
,
平面
,所以
,
又因為
,所以
平面
.
(2)解:因為
平面
,又由(1)知
,以
為原點,建立如圖所示的空間直角坐標(biāo)系
.
![]()
設(shè)
,則
,
,
,
,
,
.
設(shè)平面
的法向量為
,則
故![]()
令
,所以
.
又平面
的一個法向量
,所以
,解得
.
所以
的長為
.
【解析】對于(1),要證明線面垂直,根據(jù)判定定理,在平面內(nèi)找到兩條相交直線與所證直線垂直即可.
對于(2)涉及到二面角時,如果二面角的平面角不明顯時,往往建立合適空間直角坐標(biāo)系,利用平面的法向量的夾角來體現(xiàn)二面角,從而解決問題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,
是直角梯形,
,
,且
,
是
的中點.![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個四棱錐的正視圖和側(cè)視圖為兩個完全相同的等腰直角三角形(如圖示),腰長為1,則該四棱錐的體積為( )
![]()
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
)
(1)若曲線
在點
處的切線經(jīng)過點
,求
的值;
(2)若
在
內(nèi)存在極值,求
的取值范圍;
(3)當(dāng)
時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①函數(shù)
是奇函數(shù);
②將函數(shù)
的圖像向左平移
個單位長度,得到函數(shù)
的圖像;
③若
是第一象限角且
,則
;
④
是函數(shù)
的圖像的一條對稱軸;
⑤函數(shù)
的圖像關(guān)于點
中心對稱。
其中,正確的命題序號是______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的程序框圖運行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=( ) ![]()
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時,輸出的S的值為m,當(dāng)箭頭a指向②處時,輸出的S的值為n,則m+n=![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝超市舉辦了一次有獎促銷活動,顧客消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性抽出3個小球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸到2個紅球則打6折,若摸到1個紅球,則打7折;若沒有摸到紅球,則不打折;
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回的摸取,連續(xù)3次,每摸到1個紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,則該顧客選擇哪種抽獎方案更合適?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com