【題目】已知函數
(
為實常數) .
(I)當
時,求函數
在
上的最大值及相應的
值;
(II)當
時,討論方程
根的個數.
(III)若
,且對任意的
,都有
,求
實數a的取值范圍.
【答案】(Ⅰ)
,當
時,取等號;(Ⅱ) 當
時,即
時,方程
有2個相異的根;當
或
時,方程
有1個根;當
時,方程
有0個根;(Ⅲ) ![]()
【解析】試題分析:(I)把
代入函數解析式,求出函數的導函數,由導函數的零點把給出的定義[1,e]分段,判出在各段內的單調性,從而求出函數在[1,e]上的最大值及相應的x值;
(II)方程
根的個數等價于
時,方程
根的個數, 設
=
,求導話簡圖,利用數形結合討論
即可得解;
(III)a>0,
等價于
,原題等價于函數
在
時是減函數,
恒成立,即
在
時恒成立,進而求函數最值即可.
試題解析:
(I)
,
當
時,
,所以
單調遞減;
當
時,
,所以
單調遞增.
又
,
故
,當
時,取等號.
(II)易知
,故
,方程
根的個數等價于
時,方程
根的個數。
設
=
, ![]()
當
時,
,函數
遞減,當
時,
,函數
遞增。又
,
,作出
與直線
的圖像,
![]()
由圖像知:
當
時,即
時,方程
有2個相異的根;
當
或
時,方程
有1個根;
當
時,方程
有0個根;
(III)當
時,
在
時是增函數,又函數
是減函數,不妨設
,則
等價于![]()
即
,故原題等價于函數
在
時是減函數,
恒成立,即
在
時恒成立。
在
時是減函數,所以
.
.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:
及其上一點A(2,4)
![]()
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,o)滿足:存在圓M上的兩點P和Q,使得
,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正方體ABCD-A1B1C1D1的棱長為3,M,N分別是棱AA1,AB上的點,且AM=AN=1.
![]()
(1)證明:M,N,C,D1四點共面;
(2)平面MNCD1將此正方體分為兩部分,求這兩部分的體積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,圓
:
與
軸的正半軸交于點
,以點
為圓心的圓
:
與圓
交于
,
兩點.
(1)當
時,求
的長;
(2)當
變化時,求
的最小值;
(3)過點
的直線
與圓A切于點
,與圓
分別交于點
,
,若點
是
的中點,試求直線
的方程.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列
的前
項的和為
,公差
,若
,
,
成等比數列,
;數列
滿足:對于任意的
,等式
都成立.
(1)求數列
的通項公式;
(2)證明:數列
是等比數列;
(3)若數列
滿足
,試問是否存在正整數
,
(其中
),使
,
,
成等比數列?若存在,求出所有滿足條件的數組
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近幾年,京津冀等地數城市指數“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點圖知y與x具有線性相關關系,求y關于x的線性回歸方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規定:當一天內PM2.5的濃度平均值在(0,50]內,空氣質量等級為優;當一天內PM2.5的濃度平均值在(50,100]內,空氣質量等級為良.為使該市某日空氣質量為優或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數.)
參考公式:回歸直線的方程是
,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的兩個焦點分別為
,
,過
作橢圓長軸的垂線交橢圓于點
,若
為等腰直角三角形,則橢圓的離心率是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】試題分析:解:設點P在x軸上方,坐標為(
),∵
為等腰直角三角形,∴|PF2|=|F1F2|,
,故選D.
考點:橢圓的簡單性質
點評:本題主要考查了橢圓的簡單性質.橢圓的離心率是高考中選擇填空題常考的題目.應熟練掌握圓錐曲線中a,b,c和e的關系
【題型】單選題
【結束】
8
【題目】“
”是“對任意的正數
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com