【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ
)的周期為π,且圖象上的一個(gè)最低點(diǎn)為M(
).
(1)求f(x)的解析式及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
]時(shí),求f(x)的值域.
【答案】(1)[
],k∈Z;; (2)[1,2].
【解析】
(1)由f(x)的圖象與性質(zhì)求出T、ω和A、φ的值,寫(xiě)出f(x)的解析式,再求f(x)的單調(diào)增區(qū)間;
(2)求出0≤x≤
時(shí)f(x)的最大、最小值,即可得出函數(shù)的值域.
(1)由f(x)=Asin(ωx+φ),且T=
=π,可得ω=2;
又f(x)的最低點(diǎn)為M(
)∴A=2,且sin(
+φ)=-1;
∵0<φ
,∴![]()
∴![]()
![]()
∴f(x)=2sin(2x+
);
令2kπ-
≤2x+
≤2kπ+
,k∈Z,
解得kπ-
≤x≤kπ+
,k∈Z,
∴f(x)的單調(diào)增區(qū)間為[kπ-
,kπ+
],k∈Z;
(2)0≤x≤
,
≤2x+
≤![]()
∴當(dāng)2x+
=
或
,即x=0或
時(shí),fmin(x)=2×
=1,
當(dāng)2x+
=
,即x=
時(shí),fmax(x)=2×1=2;
∴函數(shù)f(x)在x∈[0,
]上的值域是[1,2].
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
(1)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式
恒成立的
的取值范圍;
(2)若
,
且
在
上的最小值為-2,求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)求
的單調(diào)區(qū)間和極值;
(2)證明:若
存在零點(diǎn),則
在區(qū)間
上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
.
(1)若
為偶函數(shù),求
在
上的值域;
(2)若
的單調(diào)遞減區(qū)間為
,求實(shí)數(shù)a構(gòu)成的的集合;
(3)若
時(shí),
的圖像恒在直線
的上方,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線
上一點(diǎn)P(1,-2)作傾斜角互補(bǔ)的兩條直線,分別與拋物線交于點(diǎn)
.
![]()
(1)求
的值;
(2)若
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司計(jì)劃在甲、乙兩個(gè)互聯(lián)網(wǎng)創(chuàng)新項(xiàng)目上共投資1200萬(wàn)元,每個(gè)項(xiàng)目至少要投資300萬(wàn)元.根據(jù)市場(chǎng)分析預(yù)測(cè):甲項(xiàng)目的收益
與投入
滿(mǎn)足
,乙項(xiàng)目的收益
與投入
滿(mǎn)足
.設(shè)甲項(xiàng)目的投入為
.
(1)求兩個(gè)項(xiàng)目的總收益關(guān)于
的函數(shù)
.
(2)如何安排甲、乙兩個(gè)項(xiàng)目的投資,才能使總收益最大?最大總收益為多少?(注:收益與投入的單位都為“萬(wàn)元”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年8月31日,十三屆全國(guó)人大常委會(huì)第五次會(huì)議表決通過(guò)了關(guān)于修改個(gè)人所得稅法的決定,這是我國(guó)個(gè)人所得稅法自1980年出臺(tái)以來(lái)第七次大修
為了讓納稅人盡早享受減稅紅利,在過(guò)渡期對(duì)納稅個(gè)人按照下表計(jì)算個(gè)人所得稅,值得注意的是起征點(diǎn)變?yōu)?/span>5000元,即如表中“全月應(yīng)納稅所得額”是納稅者的月薪金收入減去5000元后的余額.
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過(guò)3000元的部分 |
|
2 | 超過(guò)3000元至12000元的部分 |
|
3 | 超過(guò)12000元至25000元的部分 |
|
|
|
|
某企業(yè)員工今年10月份的月工資為15000元,則應(yīng)繳納的個(gè)人所得稅為______元![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)綠色出行,前段時(shí)間大連市在推出“共享單車(chē)”后,又推出“新能源分時(shí)租賃汽車(chē)”,其中一款新能源分時(shí)租賃汽車(chē),每次租車(chē)收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程按1元/公里計(jì)費(fèi);②行駛時(shí)間不超過(guò)40分鐘時(shí),按0.12元/分鐘計(jì)費(fèi):超出部分按0.20元/分鐘計(jì)費(fèi),己知張先生家離上班地點(diǎn)15公里,每天租用該款汽車(chē)上、下班各一次.由于堵車(chē)、紅路燈等因素,每次路上開(kāi)車(chē)花費(fèi)的時(shí)間
(分鐘)是一個(gè)隨機(jī)變量.現(xiàn)統(tǒng)計(jì)了100次路上開(kāi)車(chē)花費(fèi)時(shí)間,在各時(shí)間段內(nèi)的頻數(shù)分布情況如下表所示:
時(shí)間 |
|
|
|
|
頻數(shù) | 4 | 36 | 40 | 20 |
將各時(shí)間段發(fā)生的頻率視為概率,每次路上開(kāi)車(chē)花費(fèi)的時(shí)間視為用車(chē)的時(shí)間,范圍為
分鐘.
(1)寫(xiě)出張先生一次租車(chē)費(fèi)用
(元)與用車(chē)時(shí)間
(分鐘)的函數(shù)關(guān)系式:
(2)若公司每月給900元的車(chē)補(bǔ),請(qǐng)估計(jì)張先生每月(按24天計(jì)算)的車(chē)補(bǔ)是否足夠上下班租用新能源分時(shí)租賃汽車(chē)?并說(shuō)明理由.(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B為橢圓
上的兩個(gè)動(dòng)點(diǎn),滿(mǎn)足
.
(1)求證:原點(diǎn)O到直線AB的距離為定值;
(2)求
的最大值;
(3)求過(guò)點(diǎn)O,且分別以OA,OB為直徑的兩圓的另一個(gè)交點(diǎn)P的軌跡方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com