(本小題14分)
設(shè)函數(shù)y=f(x)的定義域?yàn)?0,+∞),且在(0,+∞)上單調(diào)遞增,若對(duì)任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,數(shù)列{an}滿足:a1=f(1)+1,
(1)求數(shù)列{an}的通項(xiàng)公式,并求Sn關(guān)于n的表達(dá)式;
(2)設(shè)函數(shù)g(x)對(duì)任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正項(xiàng)數(shù)列{bn}滿足:,Tn為數(shù)列{bn}的前n項(xiàng)和,試比較4Sn與Tn的大小。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題14分)
設(shè)函數(shù)
,其中
.
(I)當(dāng)
時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(II)求函數(shù)
的極值點(diǎn);
(III)證明對(duì)任意的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州外國(guó)語(yǔ)學(xué)校高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題14分)設(shè)函數(shù)
.![]()
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)已知
,若函數(shù)
的圖象總在直線
的下方,求
的取值范圍;
(Ⅲ)記
為函數(shù)
的導(dǎo)函數(shù).若
,試問(wèn):在區(qū)間
上是否存在
(![]()
)個(gè)正數(shù)
…
,使得
成立?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
20、 (本小題14分)
已知函數(shù)y=x2-2ax+1(a為常數(shù))在
上的最小值為
,
試將
用a表示出來(lái),并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省高三12月月考理科數(shù)學(xué)卷 題型:解答題
(本小題12分)設(shè)函數(shù)y=x
+ax
+bx+c的圖像,如圖所示,且與y=0在原點(diǎn)相切,若函數(shù)的極小值為–4,
![]()
(1)求a、b、c的值;
(2)求函數(shù)的遞減區(qū)間。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com