【題目】已知等差數(shù)列{an}滿足a3=5,a5﹣2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn .
【答案】解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
則由題設(shè)得
,
解得a1=1,d=2,
∴an=1+(n﹣1)×2=2n﹣1,
∵數(shù)列{bn}是以b1=3為首項(xiàng),公比為3的等比數(shù)列,
∴
.
(Ⅱ)∵cn=an+bn , ∴
,
∴Sn=1+3+5+7+…+(2n﹣1)+(3+32+33+…+3n)
=![]()
=
.
【解析】(Ⅰ)利用等差數(shù)列的通項(xiàng)公式由已知條件求出首項(xiàng)和公比,由此能求出等差數(shù)列{an}的通項(xiàng)公式;由數(shù)列{bn}是以b1=3為首項(xiàng),公比為3的等比數(shù)列,能求出{bn}的通項(xiàng)公式.
(Ⅱ)由
, 利用分組求和法能求出數(shù)列{cn}的前n項(xiàng)和Sn .
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和等差數(shù)列的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
;在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班
人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 |
| ||
女生 |
| ||
合計(jì) |
|
已知在全部
人中隨機(jī)抽取
人抽到喜愛打籃球的學(xué)生的概率為
.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有
的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=x2+(ab﹣a﹣4b)x+ab是偶函數(shù),則f(x)的圖象與y軸交點(diǎn)縱坐標(biāo)的最小值為( )
A.16
B.8
C.4
D.2![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有5000人,其中男生3500人,女生1500人,為了了解該校學(xué)生每周平均體育鍛煉時(shí)間的情況以及該校學(xué)生每周平均體育鍛煉時(shí)間是否與性別有關(guān),現(xiàn)在用分層抽樣的方法從中收集300位學(xué)生每周平均體育鍛煉時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),其頻率分布直方圖如下:
![]()
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
已知在樣本數(shù)據(jù)中,有60位女生的每周平均體育鍛煉時(shí)間超過4小時(shí),根據(jù)獨(dú)立性檢驗(yàn)原理,我們( )
A. 沒有理由認(rèn)為“該校學(xué)生每周平均體育鍛煉時(shí)間與性別有關(guān)”
B. 有
的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時(shí)間與性別有關(guān)”
C. 有
的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時(shí)間與性別無關(guān)”
D. 有
的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時(shí)間與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣1|+
|x﹣3|
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若不等式f(x)≤a(x+
)的解集非空,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
![]()
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex·(a+
+lnx),其中a∈R.
(I)若曲線y=f(x)在x=1處的切線與直線y=-
垂直,求a的值;
(II)當(dāng)a∈(0,ln2)時(shí),證明:f(x)存在極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
,
,
,
是實(shí)數(shù)常數(shù),
).
(1)若
,函數(shù)
的圖象關(guān)于點(diǎn)
成中心對(duì)稱,求
,
的值;
(2)若函數(shù)
滿足條件(1),且對(duì)任意
,總有
,求
的取值范圍;
(3)若
,函數(shù)
是奇函數(shù),
,
,且對(duì)任意
時(shí),不等式
恒成立,求負(fù)實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)設(shè)
,若
是偶函數(shù),求實(shí)數(shù)
的值;
(2)設(shè)
,求函數(shù)
在區(qū)間
上的值域;
(3)若不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com