【題目】設(shè)函數(shù)
.(
且
)
(1)分別判斷當(dāng)
及
時函數(shù)的奇偶性;
(2)在
且
的條件下,將(1)的結(jié)論加以推廣,使命題(1)成為推廣后命題的特例,并對推廣的結(jié)論加以證明.
【答案】(1)
時,
既不是奇函數(shù)也不是偶函數(shù),
時,
是奇函數(shù).;(2)
時,
既不是奇函數(shù)也不是偶函數(shù),
時,
是奇函數(shù).證明見解析.
【解析】
(1)根據(jù)奇偶性定義判斷;
(2)
時,
既不是奇函數(shù)也不是偶函數(shù),
時,
是奇函數(shù).根據(jù)奇偶性定義證明即可.
(1)
時,
,定義域?yàn)?/span>
,
,
此時
,
,
且
,
既不是奇函數(shù)也不是偶函數(shù),
時,
,定義域?yàn)?/span>
,
且
,
此時
,
,
是奇函數(shù).
(2)
時,
既不是奇函數(shù)也不是偶函數(shù),
時,
是奇函數(shù).
與(1)類似,
時,由
,得函數(shù)定義域是
,
,
與
既不相等也不是相反數(shù),因此
既不是奇函數(shù)也不是偶函數(shù),
時,由
,得定義域是
,
,
,
是奇函數(shù).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市的交通狀況,現(xiàn)對其6條道路進(jìn)行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如表
評估的平均得分 | (0,6] | (6,8] | (8,10] |
全市的總體交通狀況等級 | 不合格 | 合格 | 優(yōu)秀 |
(1)求本次評估的平均得分,并參照上表估計(jì)該市的總體交通狀況等級.
(2)用簡單隨機(jī)抽樣方法從這6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
滿足:![]()
(1)求
的值;
(2)求證:數(shù)列
是等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(3)設(shè)
假設(shè)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一款擊鼓小游戲規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得50分,沒有出現(xiàn)音樂則扣除150分(即獲得-150分).設(shè)每次擊鼓出現(xiàn)音樂的概率為
,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(Ⅰ)玩一盤游戲,至少出現(xiàn)一次音樂的概率是多少?
(Ⅱ)設(shè)每盤游戲獲得的分?jǐn)?shù)為
,求
的分布列;
(Ⅲ)許多玩過這款游戲的人都發(fā)現(xiàn),玩的盤數(shù)越多,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識分析其中的道理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓
:
.
![]()
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知
,圓
與x軸相交于兩點(diǎn)
(點(diǎn)
在點(diǎn)
的左側(cè)).過點(diǎn)
任作一條直線與圓
:
相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得
=
?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的右焦點(diǎn)F2和上頂點(diǎn)B在直線
上,過橢圓右焦點(diǎn)的直線交橢圓于
兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(
,
)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列
的前n項(xiàng)和為
,已知
,
.
(1)求
的值;
(2)求數(shù)列
的通項(xiàng)公式;
(3)令
,
,證明:對任意
,均有
(要求不得使用數(shù)學(xué)歸終法).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com