已知n是正偶數(shù),用數(shù)學(xué)歸納法證明時(shí),若已假設(shè)n=k(
且為偶數(shù))時(shí)命題為真,,則還需證明( )
A.n=k+1時(shí)命題成立 B. n=k+2時(shí)命題成立
C. n=2k+2時(shí)命題成立 D. n=2(k+2)時(shí)命題成立
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| 2n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| 2n |
| A、n=k+1時(shí)等式成立 |
| B、n=k+2時(shí)等式成立 |
| C、n=2k+2時(shí)等式成立 |
| D、n=2(k+2)時(shí)等式成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| 2n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:選擇題
已知n為正偶數(shù),用數(shù)學(xué)歸納法證明
時(shí),
若已假設(shè)
為偶數(shù))時(shí)命題為真,則還需要用歸納假設(shè)再證
A.
時(shí)等式成立 B.
時(shí)等式成立
C.
時(shí)等式成立 D.
時(shí)等式成立
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com