【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.
【答案】解:(Ⅰ)將6只燈泡分別標號為1,2,3,4,5,6;且1,2為次品;從6只燈泡中取出2只的基本事件:
1﹣2、1﹣3、1﹣4、1﹣5、1﹣6、2﹣3、2﹣4、2﹣5、2﹣6、3﹣4、3﹣5、3﹣6、4﹣5、4﹣6、5﹣6共有15種
從6只燈泡中取出2只都是次品的事件只有1個,因此取到2只次品的概率為
.
(Ⅱ)根據題意,取到的2只產品中正品,次品各一只的事件有
1﹣3、1﹣4、1﹣5、1﹣6、2﹣3、2﹣4、2﹣5、2﹣6共有8種,
而總的基本事件共有15種,
因此取到2只產品中恰有一只次品的概率為 ![]()
【解析】(1)將6只燈泡分別標號為1,2,3,4,5,6;且1,2為次品;用列舉法可得從6只燈泡中取出2只的基本事件,即可得從6只燈泡中取出2只都是次品的事件只有1個,進而由等可能事件的概率計算可得答案;(2)由(1)所的基本事件,分析可得取到的2只產品中正品,次品各一只的事件數目,由古典概型概率公式,計算可得答案.
科目:高中數學 來源: 題型:
【題目】已知
,
分別為等差數列和等比數列,
,
的前
項和為
.函數
的導函數是
,有
,且
是函數
的零點.
(1)求
的值;
(2)若數列
公差為
,且點
,當
時所有點都在指數函數
的圖象上.
請你求出
解析式,并證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二(1)班學生為了籌措經費給班上購買課外讀物,班委會成立了一個社會實踐小組,決定利用暑假八月份(30天計算)輪流換班去銷售一種時令水果.在這30天內每斤水果的收入
(元)與時間
(天)的部分數據如下表所示,已知日銷售
(斤)與時間
(天)滿足一次函數關系.
(1)根據提供的圖象和表格,下廚每斤水果的收入
(元)與時間
(天)所滿足的函數關系式及日銷售量
(斤)與時間
(天)的一次函數關系;
(2)用
(元)表示銷售水果的日收入,寫出
與
的函數關系式,并求這30天中第幾天日收入最大,最大值為多少元?
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在測試中,客觀題難題的計算公式為
,其中
為第
題的難度,
為答對該題的人數,
為參加測試的總人數.現對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如下表所示:
![]()
測試后,從中隨機抽取了10名學生,將他們編號后統計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
![]()
(1)根據題中數據,將抽樣的10名學生每道題實測的答對人數及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數;
![]()
(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;
(3)定義統計量
,其中
為第
題的實測難度,
為第
題的預估難度(
).規定:若
,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,雙曲線C:
=1(a>0,b>0)的左焦點為F(﹣c,0)(c>0),以OF為直徑的圓交雙曲線C的漸近線于A,B,O三點,且(
+
)
=0,若關于x的方程ax2+bx﹣c=0的兩個實數根分別為x1和x2 , 則以|x1|,|x2|,2為邊長的三角形的形狀是( )
A.鈍角三角形
B.直角三角形
C.銳角三角形
D.等腰直角三角形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com