若直線
過雙曲線
的一個焦點,且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點
與
軸不平行的直線與雙曲線相交于不同的兩點
的垂直平分線為
,求直線
在
軸上截距的取值范圍.
(Ⅰ)
.(Ⅱ)直線
在
軸上的截距的取值范圍為![]()
解析試題分析:(Ⅰ)由
得
,
,且
,解得
故雙曲線的方程為
.
(Ⅱ)由(Ⅰ)知
,依題意可設過點
的直線為
由
得
,
,
,且![]()
設
的中點
,則
,
故直線
的方程為
,即
所以直線
在
軸上的截距
,由
,且
得
,所以
.即直線
在
軸上的截距的取值范圍為![]()
考點:本題主要考查雙曲線的標準方程及幾何性質(zhì),直線與雙曲線的位置關系。
點評:中檔題,結合雙曲線的幾何性質(zhì),應用“待定系數(shù)法”求得了雙曲線標準方程。研究直線與圓錐曲線的位置關系,往往應用韋達定理,通過“整體代換”,簡化解題過程,實現(xiàn)解題目的。(II)中根據(jù)方程組有解,確定得到直線斜率范圍,易于忽視。
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當AB中點為P時,求直線AB的方程;
(2)當AB中點在直線
上時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設圓C與兩圓
,
中的一個內(nèi)切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)設直線l是圓O:
在P(x0,y0)(x0y0 ≠ 0)處的切線,且P在圓上,l與軌跡L相交不同的A,B兩點,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知離心率為
的橢圓
上的點到左焦點
的最長距離為
.![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點
任作一條與兩坐標軸都不垂直的弦
,若點
在
軸上,且使得
為
的一條內(nèi)角平分線,則稱點
為該橢圓的“左特征點”,求橢圓的“左特征點”
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知
,
,圓
,一動圓在
軸右側與
軸相切,同時與圓
相外切,此動圓的圓心軌跡為曲線C,曲線E是以
,
為焦點的橢圓。
(1)求曲線C的方程;
(2)設曲線C與曲線E相交于第一象限點P,且
,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線
與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為
和
,且|![]()
|=2,
點(1,
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過
的直線
與橢圓C相交于A,B兩點,若
A
B的面積為
,求以
為圓心且與直線
相切是圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線
的極坐標方程是
,以極點為原點,極軸為
軸正方向建立平面直角坐標系,直線的參數(shù)方程是:
(為參數(shù)).
(Ⅰ)求曲線
的直角坐標方程;
(Ⅱ)設直線與曲線
交于
,
兩點,點
的直角坐標為
,若
,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
過點
,且它的離心率
.直線
與橢圓
交于
、
兩點.![]()
(Ⅰ)求橢圓的標準方程;
(Ⅱ)當
時,求證:
、
兩點的橫坐標的平方和為定值;
(Ⅲ)若直線
與圓
相切,橢圓上一點
滿足
,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com