【題目】近些年隨著我國(guó)國(guó)民消費(fèi)水平的升級(jí),汽車產(chǎn)品已經(jīng)逐漸進(jìn)入千家萬戶,但是我國(guó)的城市發(fā)展水平并不能與汽車保有量增速形成平衡,城市交通問題越發(fā)突出,因此各大城市相繼出現(xiàn)了購(gòu)車限號(hào)上牌的政策.某城市采用搖號(hào)買車的限號(hào)上牌方式,申請(qǐng)人提供申請(qǐng),經(jīng)審查合格后,確認(rèn)申請(qǐng)編碼為有效編碼,這時(shí)候就可以憑借申請(qǐng)編碼參加每月一次的搖號(hào).假設(shè)該城市有20萬人參加搖號(hào),每個(gè)月有2萬個(gè)名額,每個(gè)月?lián)u上的人退出搖號(hào),沒有搖上的人繼續(xù)下個(gè)月?lián)u號(hào).
(1)平均每個(gè)人搖上號(hào)需要多長(zhǎng)時(shí)間?
(2)如果每個(gè)月都有2萬人補(bǔ)充進(jìn)搖號(hào)隊(duì)伍,以每個(gè)人進(jìn)入搖號(hào)的月份算第一個(gè)月,他搖到號(hào)的月份設(shè)為隨機(jī)變量
.
①證明:
為等比數(shù)列;
②假設(shè)該項(xiàng)政策連續(xù)實(shí)施36個(gè)月,小王是第一個(gè)月就參加搖號(hào)的人,記小王參.加搖號(hào)的次數(shù)為
,試求
的數(shù)學(xué)期望(精確到0.01).
參考數(shù)據(jù):
,
.
【答案】(1)5.5個(gè)月;(2)①證明見解析;②![]()
【解析】
(1)設(shè)每個(gè)人搖上號(hào)的時(shí)間為
個(gè)月,得到
,求得相應(yīng)的概率,計(jì)算出數(shù)學(xué)期望,即可得到結(jié)論;
(2)(。┙Y(jié)合等比數(shù)列的定義,即可證得
為等比數(shù)列;(ⅱ)由(ⅰ)求得隨機(jī)變量
的數(shù)學(xué)期望,再結(jié)合乘公比錯(cuò)位相減法,即可求解.
(1)由題意,設(shè)每個(gè)人搖上號(hào)的時(shí)間為
個(gè)月,則
,
可得
,
,
,
,
,
所以
,
即平均每個(gè)人搖上號(hào)需要的時(shí)間為5.5個(gè)月.
(2)(。┟總(gè)月的搖號(hào)中恰有
的概率搖上,
則有
,且
,
故
為等比數(shù)列.
(ⅱ)由(。┛芍,當(dāng)
時(shí),
,
.
故
的數(shù)學(xué)期望為:
.
設(shè)
.
則
,
兩式作差得![]()
![]()
所以![]()
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論
的單調(diào)性;
(2)定義:對(duì)于函數(shù)
,若存在
,使
成立,則稱
為函數(shù)
的不動(dòng)點(diǎn).如果函數(shù)
存在不動(dòng)點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司A產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:十萬元)存在較好的線性關(guān)系,下表記錄了該公司最近8次該產(chǎn)品的相關(guān)數(shù)據(jù),且根據(jù)這8組數(shù)據(jù)計(jì)算得到y關(guān)于x的線性回歸方程為
.
x(萬元) | 6 | 7 | 8 | 11 | 12 | 14 | 17 | 21 |
y(十萬元) | 1.2 | 1.5 | 1.7 | 2 | 2.2 | 2.4 | 2.6 | 2.9 |
(1)求
的值(結(jié)果精確到0.0001),并估計(jì)公司A產(chǎn)品投入成本30萬元后產(chǎn)品的銷售收入(單位:十萬元).
(2)該公司B產(chǎn)品生產(chǎn)的投入成本u(單位:萬元)與產(chǎn)品銷售收入v(單位:十萬元)也存在較好的線性關(guān)系,且v關(guān)于u的線性回歸方程為
.
(i)估計(jì)該公司B產(chǎn)品投入成本30萬元后的毛利率(毛利率
);
(ii)判斷該公司A,B兩個(gè)產(chǎn)品都投入成本30萬元后,哪個(gè)產(chǎn)品的毛利率更大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷.定價(jià)為1000元/件.試銷結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 40 | 60 | 80 | 100 |
頻數(shù) | 9 | 12 | 6 | 3 |
(1)若該4S店試銷期間每個(gè)零件的進(jìn)價(jià)為650元/件,求試銷連續(xù)30天中該零件日銷售總利潤(rùn)不低于24500元的頻率;
(2)試銷結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550元/件;小箱每箱有45件,批發(fā)價(jià)為600元/件.該4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S店.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 50 | 70 | 90 | 110 |
頻數(shù) | 5 | 15 | 8 | 2 |
(。┰O(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤(rùn);
(ⅱ)以總利潤(rùn)作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點(diǎn)
,且離心率為
.設(shè)
為橢圓
的左、右頂點(diǎn),P為橢圓上異于
的一點(diǎn),直線
分別與直線
相交于
兩點(diǎn),且直線
與橢圓
交于另一點(diǎn)
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線
與
的斜率之積為定值;
(Ⅲ)判斷三點(diǎn)
是否共線,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長(zhǎng)為3的線段
的兩端點(diǎn)
,
分別在
軸和
軸上移動(dòng),
.
(1)求點(diǎn)
的軌跡
的方程.
(2)過
作互相垂直的兩條直線分別與軌跡
交于
,
和
,
,設(shè)
中點(diǎn)為
,
中點(diǎn)為
,試探究直線
是否過定點(diǎn)?若是,求出該定點(diǎn);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+2φ)為偶函數(shù),其中φ∈(0,
),則下列關(guān)于函數(shù)g(x)=sin(2x+φ)的描述正確的是( )
A.g(x)在區(qū)間[
]上的最小值為﹣1
B.g(x)的圖象可由函數(shù)f(x)的圖象向上平移一個(gè)單位,再向右平移
個(gè)單位長(zhǎng)度得到
C.g(x)的圖象的一個(gè)對(duì)稱中心為(
,0)
D.g(x)的一個(gè)單調(diào)遞增區(qū)間為[0,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,底面
是正方形,
底面
,
,
、
、
分別是棱
、
、
的中點(diǎn),對(duì)于平面
截四棱錐
所得的截面多邊形,有以下三個(gè)結(jié)論:
①截面的面積等于
;
②截面是一個(gè)五邊形;
③截面只與四棱錐
四條側(cè)棱中的三條相交.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的參數(shù)方程為:
(
為參數(shù)),
的參數(shù)方程為:
(
為參數(shù)).
(1)化
、
的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若直線
的極坐標(biāo)方程為:
,曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,求
的中點(diǎn)
到直線
的距離.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com