已知橢圓
=1(a>b>0)與x軸的正半軸交于點(diǎn)A,O是原點(diǎn).若橢圓上存在一點(diǎn)M,使MA⊥MO,求橢圓離心率e的取值范圍.
<e<1.
設(shè)M(x,y),則
=(x,y),
=(x-a,y).
∵
⊥
,
∴0=
·
=x(x-a)+y2.
由橢圓方程得y2=b2-
x2代入得c2x2-a3x+a2b2=0.
解得x=a或
.
由題意0<
<a.
∴b2<c2.∴a2-c2<c2.
解得e2=
>
.
∴
<e<1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| x2 |
| 2b2 |
| y2 |
| b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知橢圓
+
=1的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交橢圓于A(yíng),B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為G,AB的中垂線(xiàn)與x軸和y軸分別交于D,E兩點(diǎn).
![]()
(1)若點(diǎn)G的橫坐標(biāo)為-
,求直線(xiàn)AB的斜率.
(2)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2.試問(wèn):是否存在直線(xiàn)AB,使得S1=S2?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知橢圓
+
=1的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交橢圓于A(yíng),B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為G,AB的中垂線(xiàn)與x軸和y軸分別交于D,E兩點(diǎn).
![]()
(1)若點(diǎn)G的橫坐標(biāo)為-
,求直線(xiàn)AB的斜率.
(2)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2.試問(wèn):是否存在直線(xiàn)AB,使得S1=S2?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年上海市崇明縣高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓
=1的離心率等于
,點(diǎn)P(2,
)在橢圓上。
(1)求橢圓C方程;
(2)設(shè)橢圓C的左右頂點(diǎn)分別為A,B,過(guò)點(diǎn)Q(2,0)的動(dòng)直線(xiàn)l與橢圓C相交于M,N兩點(diǎn),是否存在定直線(xiàn)
:x=t,使得直線(xiàn)
與AN的交點(diǎn)G總在直線(xiàn)BM上?若存在,求出一個(gè)滿(mǎn)足條件的t值;若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com