【題目】已知三角形內角A滿足
,則
的值為( )
A.
B.
C.
D. ![]()
【答案】D
【解析】
將已知等式兩邊平方,判斷出cosA小于0,sinA大于0,且sinA的絕對值大于cosA的絕對值,利用完全平方公式求出sinA﹣cosA的值,與已知等式聯(lián)立求出sinA與cosA的值,即可確定出
的值.
∵A為三角形內角,且sinA+cosA=
,
∴將sinA+cosA=
兩邊平方得:2sinAcosA=﹣
,
∴A為鈍角,即sinA>0,cosA<0,且|sinA|>|cosA|,
∴1﹣2sinAcosA=
,即(sinA﹣cosA)2=
,
∵sinA﹣cosA>0,
∴sinA﹣cosA=
,
聯(lián)立得:
,
解得:sinA=
,cosA=﹣
,
則sin2A=![]()
故選:D
科目:高中數(shù)學 來源: 題型:
【題目】某年級組織學生參加了某項學術能力測試,為了解參加測試學生的成績情況,從中隨機抽取20名學生的測試成績作為樣本,規(guī)定成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計結果如圖:
![]()
(1)求
的值和樣本的平均數(shù);
(2)從該樣本成績優(yōu)秀的學生中任選兩名,求這兩名學生的成績至少有一個落在
內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,對一切正整數(shù)
,點
都在函數(shù)
的圖象上,記
與
的等差中項為
.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)若
,求數(shù)列
的前
項和
;
(Ⅲ)設集合
,
,等差數(shù)列
的任意一項
,其中
是
中的最小數(shù),且
,求
的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校共有教師300人,其中中級教師有120人,高級教師與初級教師的人數(shù)比為
.為了解教師專業(yè)發(fā)展要求,現(xiàn)采用分層抽樣的方法進行調查,在抽取的樣本中有中級教師72人,則該樣本中的高級教師人數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點E是棱PC的中點,平面ABE與棱PD交于點F.
![]()
(1)求證:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線
的焦點為
,準線為
.已知以
為圓心,半徑為4的圓與
交于
、
兩點,
是該圓與拋物線
的一個交點,
.
(1)求
的值;
(2)已知點
的縱坐標為
且在
上,
、
是
上異于點
的另兩點,且滿足直線
和直線
的斜率之和為
,試問直線
是否經(jīng)過一定點,若是,求出定點的坐標,否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
為偶函數(shù),且函數(shù)
圖象的兩相鄰對稱軸間的距離為
.
(1)求
的值;
(2)求函數(shù)
的對稱軸方程;
(3)當
時,方程
有兩個不同的實根,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
是定義在R上的奇函數(shù),
(1)求實數(shù)
的值;
(2)如果對任意
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com