【題目】選修4﹣1:幾何證明選講
如圖,已知四邊形ABCD內接于⊙O,且AB是的⊙O直徑,過點D的⊙O的切線與BA的延長線交于點M.![]()
(1)若MD=6,MB=12,求AB的長;
(2)若AM=AD,求∠DCB的大小.
【答案】
(1)解:因為MD為⊙O的切線,由切割線定理知,
MD2=MAMB,又MD=6,MB=12,MB=MA+AB,
所以MA=3,AB=12﹣3=9.
(2)解:因為AM=AD,所以∠AMD=∠ADM,連接DB,又MD為⊙O的切線,
由弦切角定理知,∠ADM=∠ABD,
又因為AB是⊙O的直徑,所以∠ADB為直角,即∠BAD=90°﹣∠ABD.
又∠BAD=∠AMD+∠ADM=2∠ABD,
于是90°﹣∠ABD=2∠ABD,所以∠ABD=30°,所以∠BAD=60°.
又四邊形ABCD是圓內接四邊形,所以∠BAD+∠DCB=180°,
所以∠DCB=120°
【解析】(1)利用MD為⊙O的切線,由切割線定理以及已知條件,求出AB即可.(2)推出∠AMD=∠ADM,連接DB,由弦切角定理知,∠ADM=∠ABD,通過AB是⊙O的直徑,四邊形ABCD是圓內接四邊形,對角和180°,求出∠DCB即可.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=
,其中a>﹣1.若f(x)在R上是增函數,則實數a的取值范圍是( )
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量m=(cos
,sin
),n=(2
+sinx,2
-cos
),函數
=m·n,x∈R.
(1) 求函數
的最大值;
(2) 若
且
=1,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的長軸長為
,
為坐標原點.
(Ⅰ)求橢圓
的方程和離心率;
(Ⅱ)設點
,動點
在橢圓
上,且
在
軸的右側,線段
的垂直平分線
與
軸相交于點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且![]()
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱錐P-ABCD的體積為
,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,
為坐標原點,雙曲線
和橢圓
均過點
,且以
的兩個頂點和
的兩個焦點為頂點的四邊形是面積為2的正方形.
![]()
(1)求
的方程;
(2)是否存在直線
,使得
與
交于
兩點,與
只有一個公共點,且
?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的奇函數f(x),當x>0時,f(x)=ax2+bx+8(0<a<4),點A(2,0)在函數f(x)的圖象上,且關于x的方程f(x)+1=0有兩個相等的實根.
(1)求函數f(x)解析式;
(2)若x∈[t,t+2](t>0)時,函數f(x)有最小值1,求實數t的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com