【題目】已知函數f(x)是定義在R上的偶函數,且在區間[0,+∞)上單調遞增,若實數a滿足f(lga)+f(lg
)≤2f(1),則a的取值范圍是( )
A.(﹣∞,10]
B.[
,10]
C.(0,10]
D.[
,1]
科目:高中數學 來源: 題型:
【題目】如圖,菱
與四邊形BDEF相交于BD,
平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點,
.
(I)求證:GM//平面CDE;
(II)求證:平面ACE⊥平面ACF.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A、B、C所對的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 已知中心在原點,焦點在
軸上的橢圓C的離心率為
,且經過點
.
(1)求橢圓C的方程;
(2)是否存在過點
的直線
與橢圓C相交于不同的兩點
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m﹣3)x﹣2y+(13﹣7m)=0.
(1)若l1⊥l2 , 求實數m的值;
(2)若l1∥l2 , 求l1與l2之間的距離d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,側面PCD⊥底面ABCD,PD⊥CD,E為PC中點,底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:BE∥平面APD;
(Ⅱ)求證:BC⊥平面PBD.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com