【題目】已知函數
,
.
(Ⅰ)當
時,求函數
切線斜率中的最大值;
(Ⅱ)若關于
的方程
有解,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,在矩形
中,已知
,點
、
分別在
、
上,且
,將四邊形
沿
折起,使點
在平面
上的射影
在直線
上.
![]()
![]()
(I)求證:
;
(II)求點
到平面
的距離;
(III)求直線
與平面
所成的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}滿足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通項公式;
(2) 求證:
+
+…+
<1對任意正整數m都成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,滿足a1=3,a4=12,數列{bn}滿足b1=4,b4=20,且{bn-an}為等比數列.
(1)求數列{an}和{bn}的通項公式;
(2)求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種牙膏新品種時,需要選用兩種不同的添加劑.現有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用.根據試驗設計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗.(寫解題過程)
(1)求所選用的兩種不同的添加劑的芳香度之和等于4的概率;
(2)求所選用的兩種不同的添加劑的芳香度之和不小于3的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著人們經濟收入的不斷增長,個人購買家庭轎車已不再是一種時尚.車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關心的問題.某汽車銷售公司做了一次抽樣調查,并統計得出某款車的使用年限
(單位:年)與所支出的總費用
(單位:萬元)有如下的數據資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知
對
呈線性相關關系.
(1)試求線性回歸方程
=
+
的回歸系數
,
;
(2)當使用年限為
年時,估計車的使用總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線
的參數方程為
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.直線
過點
.
(1)若直線
與曲線
交于
兩點,求
的值;
(2)求曲線
的內接矩形的周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一片森林原面積為
.計劃從某年開始,每年砍伐一些樹林,且每年砍伐面積的百分比相等.并計劃砍伐到原面積的一半時,所用時間是10年.為保護生態環境,森林面積至少要保留原面積的
.已知到今年為止,森林剩余面積為原面積的
.
(1)求每年砍伐面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)為保護生態環境,今后最多還能砍伐多少年?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com