如圖,曲線
與曲線
相交于
、
、
、
四個點.
⑴ 求
的取值范圍;
⑵ 求四邊形
的面積的最大值及此時對角線
與
的交點坐標.![]()
(1)
(2)
的最大值為16.,對角線
與
交點坐標為
.
解析試題分析:(1)通過直線與拋物線聯(lián)立,借助判別式和韋達定理求解參數(shù)的范圍;(2)根據(jù)圖形的對稱性,明確四邊系A(chǔ)BCD的面積為
,然后借助韋達定理將三角形面積表示為含有參數(shù)
的表達式,最后化簡通過構(gòu)造函數(shù)
, 利那用求導(dǎo)的方法研究最值. 分別求出對角線
與
的直線方程,進而求交點坐標.
試題解析:(1) 聯(lián)立曲線
消去
可得
,
,根據(jù)條件可得
,解得
.
(4分)
(2) 設(shè)
,
,
,
,![]()
則![]()
![]()
.
(6分)
令
,則
,
, (7分)
設(shè)
,
則令
,
可得當
時,
的最大值為
,從而
的最大值為16.
此時
,即
,則
. (9分)
聯(lián)立曲線
的方程消去
并整理得
,解得
,
,
所以
點坐標為
,
點坐標為
,
,
則直線
的方程為
, (11分)
當
時,
,由對稱性可知
與
的交點在
軸上,
即對角線
與
交點坐標為
. (12分)
考點:1.直線與圓錐曲線的綜合應(yīng)用能力;2.直線與圓錐曲線的相關(guān)知識;3.圓錐曲線中極值的求取.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上,焦距為
,且經(jīng)過點
,直線
交橢圓于不同的兩點A,B.
(1)求
的取值范圍;,
(2)若直線
不經(jīng)過點
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:
(
)上任意一點到兩焦點距離之和為
,離心率為
,左、右焦點分別為
,
,點
是右準線上任意一點,過
作直 線
的垂線
交橢圓于
點.![]()
(1)求橢圓
的標準方程;
(2)證明:直線
與直線
的斜率之積是定值;
(3)點
的縱坐標為3,過
作動直線
與橢圓交于兩個不同點
,在線段
上取點
,滿足
,試證明點
恒在一定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓
的左右頂點分別為
,離心率
.過該橢圓上任一點
作
軸,垂足為
,點
在
的延長線上,且
.
(1)求橢圓的方程;
(2)求動點
的軌跡
的方程;
(3)設(shè)直線
(
點不同于
)與直線
交于點
,
為線段
的中點,試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:
的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-
的距離為
-
,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).![]()
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知
、
分別是橢圓
:
的左、右焦點,點
在直線
上,線段
的垂直平分線經(jīng)過點
.直線
與橢圓
交于不同的兩點
、
,且橢圓
上存在點
,使
,其中
是坐標原點,
是實數(shù).
(Ⅰ)求
的取值范圍;
(Ⅱ)當
取何值時,
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
動點
與定點
的距離和它到直線
的距離之比是常數(shù)
,記點
的軌跡為曲線
.
(I)求曲線
的方程;
(II)設(shè)直線
與曲線
交于
兩點,
為坐標原點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓C:
的左、右焦點分別為
,離心率為
,點A是橢圓上任一點,
的周長為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點
任作一動直線l交橢圓C于
兩點,記
,若在線段
上取一點R,使得
,則當直線l轉(zhuǎn)動時,點R在某一定直線上運動,求該定直線的方程.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(13分)已知橢圓C:
(a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點
.
(I)求橢圓C的離心率:
(II)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且
,求點Q的軌跡方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com