科目:高中數學 來源: 題型:
| x2+2x+n |
查看答案和解析>>
科目:高中數學 來源: 題型:
| 5 |
| 6 |
| a |
| m |
| 1 |
| n |
|
查看答案和解析>>
科目:高中數學 來源:2014屆山東省高一第二學期期中考試數學試卷(解析版) 題型:解答題
已知函數f(x)=cos(2x+
)+
-
+
sinx·cosx
⑴ 求函數f(x)的單調減區間; ⑵ 若xÎ[0,
],求f(x)的最值;
⑶ 若f(a)=
,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=
cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
第二問中,∵xÎ[0,
],∴2x-
Î[-
,
],
∴當2x-
=-
,即x=0時,f(x)min=-
,
當2x-
=
,
即x=
時,f(x)max=1
第三問中,(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=![]()
利用構造角得到sin2a=sin[(2a-
)+
]
解:⑴ f(x)=
cos2x-
sin2x-cos2x+
sin2x ………2分
=
sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
……………………5分
∴ f(x)的減區間是[
+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0,
],∴2x-
Î[-
,
], ……………………7分
∴當2x-
=-
,即x=0時,f(x)min=-
, ……………………8分
當2x-
=
,
即x=
時,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-
)+
]
=sin(2a-
)·cos
+cos(2a-
)·sin
………12分
=
×
+
×
=![]()
查看答案和解析>>
科目:高中數學 來源: 題型:單選題
查看答案和解析>>
科目:高中數學 來源: 題型:
A.若(x-1)2+(y-2)2≠0,則x≠1且y≠2
B.若(x-1)2+(y-2)2=0,則x≠1且y≠2
C.若(x-1)2+(y-2)2≠0,則x≠1或y≠2
D.若(x-1)2+(y-2)2=0,則x≠1或y≠2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com