【題目】已知集合
,從集合
中取出
個(gè)不同元素,其和記為
;從集合
中取出
個(gè)不同元素,其和記為
.若
,則
的最大值為____.
【答案】44
【解析】
欲使m,n更大,則所取元素盡可能小,所以從最小開始取S
由
得到
令2n-1=t,則m+2n=t+m+1,t為奇數(shù),m為整數(shù),則
,由基本不等式
得
取等條件不成立,則檢驗(yàn)t=22附近取值,只有t=21,m=22和t=23,m=20,成立,則問題得解.
欲使m,n更大,則所取元素盡可能小,所以從最小開始取,S=
即
令2n-1=t,則m+2n=t+m+1,t為奇數(shù),m為整數(shù),則
,由基本不等式
當(dāng)且僅當(dāng)m=t=22時(shí)取等,∵t為奇數(shù),∴
的最大值在t=22附近取到,則t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值為43,所以
的最大值為44
故答案為44
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
在橢圓
上,橢圓的右焦點(diǎn)
,直線
過橢圓的右頂點(diǎn)
,與橢圓交于另一點(diǎn)
,與
軸交于點(diǎn)
.
(1)求橢圓
的方程;
(2)若
為弦
的中點(diǎn),是否存在定點(diǎn)
,使得
恒成立?若存在,求出
點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)若
,交橢圓
于點(diǎn)
,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為
時(shí),求
(Ⅰ)a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地統(tǒng)計(jì)局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。
![]()
(1)求居民月收入在[3000,3500)內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進(jìn)一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)設(shè)函數(shù)
在
處的切線方程為
,若函數(shù)
是
上的單調(diào)增函數(shù),求
的值;
(3)是否存在一條直線與函數(shù)
的圖象相切于兩個(gè)不同的點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1=
,(n∈N*)
(1)求數(shù)列{an}的通項(xiàng)公式an,
(2)若數(shù)列{bn}滿足bn=(3n﹣1)
an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(﹣1)nλ<Tn對一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x+3=0,過原點(diǎn)的直線l與圓C有公共點(diǎn).
(1)求直線l斜率k的取值范圍;
(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P為圓C上的任意一點(diǎn),求線段OP的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以橢圓
的焦點(diǎn)和短軸端點(diǎn)為頂點(diǎn)的四邊形恰好是面積為4的正方形.
(1)求橢圓
的方程:
(2)若
是橢圓
上的動(dòng)點(diǎn),求
的取值范圍;
(3)直線
:
與橢圓
交于異于橢圓頂點(diǎn)的
,
兩點(diǎn),
為坐標(biāo)原點(diǎn),直線
與橢圓
的另一個(gè)交點(diǎn)為
點(diǎn),直線
和直線
的斜率之積為1,直線
與
軸交于點(diǎn)
.若直線
,
的斜率分別為
,
試判斷
,是否為定值,若是,求出該定值;若不是,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com