【題目】如圖,四邊形ABCD為菱形,四邊形ACFE為平行四邊形,設(shè)BD與AC相交于點(diǎn)G,AB=BD=AE=2,∠EAD=∠EAB.
![]()
(1)證明:平面ACFE⊥平面ABCD;
(2)若直線AE與BC的夾角為60°,求直線EF與平面BED所成角的余弦值.
【答案】(1)證明見解析(2)![]()
【解析】
(1)先由已知條件求得
,得到
,再結(jié)合菱形的對(duì)角線垂直,可得
平面
,即可證得平面ACFE⊥平面ABCD;
(2)建立空間直角坐標(biāo)系,求得各點(diǎn)的坐標(biāo),設(shè)
的坐標(biāo),根據(jù)條件求出
,再求得直線的方向向量和平面的法向量,利用向量的夾角公式,即可求解.
(1)證明:連接EG,因?yàn)?/span>AB=BD=AE=2,∠EAD=∠EAB,
可得△EAD≌EAB,∴ED=EB.
∵G為BD的中點(diǎn),所以EG⊥BD,因?yàn)樗倪呅?/span>ABCD為菱形,∴AC⊥BD,
∴BD⊥平面ACEF,因?yàn)?/span>BD平面ABCD;
∴平面ACFE⊥平面ABCD;
![]()
(2)因?yàn)?/span>EF∥AG,直線EF與平面BED所成角即為AG與平面BED所成角;
以G為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,如圖所示,
設(shè)E(a,0,b)則
(a
,0,b),
因?yàn)?/span>
(
,﹣1,0),
所以由條件可得:|
|2=(a
)2+b2=4且![]()
a+3=2×2×cos60°=2;
解得
,所以
(
,﹣1,
),因?yàn)?/span>
(0,2,0);
所以可取平面BED的法向量
(2
,0,﹣1),因?yàn)?/span>
(﹣2
,0,0),
設(shè)直線EF與平面BED所成角為θ,則sinθ
,
∵0<θ
;∴sosθ
;
既直線EF與平面BED所成角的余弦值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)“主持朗誦”社團(tuán)的成員中,分別有高一、高二、高三年級(jí)各1、2、3名表達(dá)與形象俱佳的學(xué)生,在該校“元旦節(jié)目匯演”中,要從這6名學(xué)生中選取兩人擔(dān)任節(jié)目主持人,則至少有一個(gè)是高三學(xué)生的概率是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系
中,曲線
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的極坐標(biāo)方程;
(2)已知點(diǎn)
,直線
的極坐標(biāo)方程為
,它與曲線
的交點(diǎn)為
,
,與曲線
的交點(diǎn)為
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)
,g(x)=f(
)+1(k∈R,k≠0),則下列關(guān)于函數(shù)y=f[g(x)]+1的零點(diǎn)個(gè)數(shù)判斷正確的是( )
A.當(dāng)k>0時(shí),有2個(gè)零點(diǎn);當(dāng)k<0時(shí),有4個(gè)零點(diǎn)
B.當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有2個(gè)零點(diǎn)
C.無論k為何值,均有2個(gè)零點(diǎn)
D.無論k為何值,均有4個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求直線
和曲線
的普通方程;
(2)已知點(diǎn)
,且直線
和曲線
交于
兩點(diǎn),求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變,使用移動(dòng)支付購買商品已成為一部分人的消費(fèi)習(xí)慣.某企業(yè)為了解該企業(yè)員工
、
兩種移動(dòng)支付方式的使用情況,從全體員工中隨機(jī)抽取了100人,統(tǒng)計(jì)了他們?cè)谀硞(gè)月的消費(fèi)支出情況.發(fā)現(xiàn)樣本中
,
兩種支付方式都沒有使用過的有5人;使用了
、
兩種方式支付的員工,支付金額和相應(yīng)人數(shù)分布如下:
支付金額(元) 支付方式 |
|
| 大于2000 |
使用 | 18人 | 29人 | 23人 |
使用 | 10人 | 24人 | 21人 |
依據(jù)以上數(shù)據(jù)估算:若從該公司隨機(jī)抽取1名員工,則該員工在該月
、
兩種支付方式都使用過的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,射線
的方程為
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的方程為
.一只小蟲從點(diǎn)
沿射線
向上以
單位/min的速度爬行
(1)以小蟲爬行時(shí)間
為參數(shù),寫出射線
的參數(shù)方程;
(2)求小蟲在曲線
內(nèi)部逗留的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y,z均為正數(shù).
(1)若xy<1,證明:|x+z||y+z|>4xyz;
(2)若
=
,求2xy2yz2xz的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com